Вопрос задан 28.08.2018 в 13:55. Предмет Математика. Спрашивает Усова Дарья.

(3/4+5/6):(1целая1/2-3/5)*1целую8/19-(1целая-7/8)*4целых Решить дробь

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гонсалес Лурдес.
В итоге получится 2 целых.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для начала, решим данное выражение по порядку действий:

1. Вычислим сначала скобки: (3/4 + 5/6) и (1 целая 1/2 - 3/5) Для этого нужно привести дроби к общему знаменателю. Найдем НОК(4, 6) = 12. Теперь приведем дроби к знаменателю 12: (3/4 + 5/6) = (9/12 + 10/12) = 19/12 (1 целая 1/2 - 3/5) = (2/2 + 1/2 - 3/5) = (5/2 - 3/5) Теперь найдем общий знаменатель для дроби (5/2 - 3/5). Найдем НОК(2, 5) = 10. Приведем дроби к знаменателю 10: (5/2 - 3/5) = (25/10 - 6/10) = 19/10 2. Теперь посчитаем деление (19/12) : (19/10).

Для этого нужно умножить первую дробь на обратную второй. То есть (19/12) * (10/19). Здесь числитель первой дроби сократится с знаменателем второй дроби, и наоборот. Получаем: (19/12) * (10/19) = 1 3. Вычислим выражение (1 целая 8/19 - (1 целая - 7/8)) * 4 целых.

Сначала приведем дроби к общему знаменателю. (1 целая 8/19 - (1 целая - 7/8)) = (19/19 + 8/19 - (19/19 - 133/19)) Вычислим скобки: (19/19 + 8/19 - (19/19 - 133/19)) = (27/19 - (-114/19)) Изменим знак перед второй дробью: (27/19 - (-114/19)) = (27/19 + 114/19) Теперь сложим дроби: (27/19 + 114/19) = 141/19 Теперь умножим на 4 целых: 141/19 * 4 = 564/19 4. Наконец, вычислим итоговое выражение: 1 - 564/19 = (19/19 - 564/19) = -545/19

Итак, ответ: -545/19

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос