Вопрос задан 27.08.2018 в 22:06. Предмет Математика. Спрашивает Беленькая Зизи.

Уравнения: Нужны решения, буду благодарен. I. а) -6,8 - 1/3x = 7,2 б) x * (9,8 + 2x) = 0 в) -3,1 +

1/6x = 3,5 г) (5,6 - 2x) * x = 0 II. а) -2,8 * (3x + 7) - 4,2 = 1,4 б) 2x = x * (x + 1,5) в) - 1,3 * (7 + 4x) - 11 = -4,5 г) (x - 2,3) * x = 4x
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Филатов Алексей.
Ответ на фото, но: Три уравнения: 1.б), 1.г), 2.б) исправила. Это те уравнения где равно 0. Все остальные уравнения на фото правильные и прошли проверку. 1.б) х(9,8+2х)=0 ●●● 9,8х+2х^2=0 ●●● 9,8х=(-2х^2) ●●● 9,8х÷(-2х)=х ●●● х=(-4,9) ●●● проверка: ●●● (-4,9)×((9,8+2×(-4,9))=(-4,9)×(9,8-9,8)=0 ●●● ______________ 1.г) ● (5,6-2х)х=0 ●●● 5,6х-2х^2=0 ●●● 5,6х=2х^2 ●●● 5,6х÷2х=х ●●● х=2,8 ●●● проверка: ●●● (5,6-2×2,8)×2,8=(5,6-5,6)×2,8=0×2,8=0 ●●● _____________ 2.б) ● 2х=х(х+1,5) ●●● 2х=х^2+1,5х ●●● 2х-1,5х=х^2 ●●● 0,5х=х^2 ●●● 0,5х÷х=х ●●● х=0,5 ●●● проверка: ●●● 2×0,5=0,5(0,5+1,5) ●●● 1=0,5×2=1 ●●● __________ P.s. 《 x^2 》- это икс в квадрате. 《 ●●● 》это выделила пробелы между действиями, что бы не было каши

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

I'll be happy to help you solve these equations! Let's go through each equation step by step and find the solutions.

I. а) -6.8 - 1/3x = 7.2

To solve this equation, we can start by isolating the variable x.

First, let's get rid of the decimal by multiplying the entire equation by 3 to eliminate the fraction:

-20.4 - x = 21.6

Next, we can isolate x by adding 20.4 to both sides of the equation:

- x = 21.6 + 20.4

Simplifying, we have:

- x = 42

Finally, we can multiply both sides of the equation by -1 to solve for x:

x = -42

So the solution to the equation -6.8 - 1/3x = 7.2 is x = -42.

б) x * (9.8 + 2x) = 0

To solve this equation, we can expand the expression on the left side:

9.8x + 2x^2 = 0

Now, we have a quadratic equation. We can rearrange it into standard quadratic form by moving all the terms to one side:

2x^2 + 9.8x = 0

Next, we can factor out the common factor of x:

x(2x + 9.8) = 0

To find the solutions, we can set each factor equal to zero and solve for x:

x = 0 or 2x + 9.8 = 0

For the second equation, we can subtract 9.8 from both sides:

2x = -9.8

Dividing both sides by 2, we get:

x = -4.9

So the solutions to the equation x * (9.8 + 2x) = 0 are x = 0 and x = -4.9.

в) -3.1 + 1/6x = 3.5

To solve this equation, we can start by isolating the variable x.

First, let's get rid of the fraction by multiplying the entire equation by 6:

-18.6 + x = 21

Next, we can isolate x by adding 18.6 to both sides of the equation:

x = 21 + 18.6

Simplifying, we have:

x = 39.6

So the solution to the equation -3.1 + 1/6x = 3.5 is x = 39.6.

г) (5.6 - 2x) * x = 0

To solve this equation, we can apply the zero product property, which states that if a product of two factors equals zero, then at least one of the factors must be zero.

Setting each factor equal to zero, we have:

5.6 - 2x = 0 or x = 0

For the first equation, we can subtract 5.6 from both sides:

-2x = -5.6

Dividing both sides by -2, we get:

x = 2.8

So the solutions to the equation (5.6 - 2x) * x = 0 are x = 2.8 and x = 0.

II. а) -2.8 * (3x + 7) - 4.2 = 1.4

To solve this equation, we can start by simplifying the expression on the left side:

-8.4x - 19.6 - 4.2 = 1.4

Next, we can combine like terms:

-8.4x - 23.8 = 1.4

To isolate x, we can add 23.8 to both sides:

-8.4x = 25.2

Dividing both sides by -8.4, we get:

x = -3

So the solution to the equation -2.8 * (3x + 7) - 4.2 = 1.4 is x = -3.

б) 2x = x * (x + 1.5)

To solve this equation, we can start by distributing x to the terms inside the parentheses:

2x = x^2 + 1.5x

Next, we can rearrange the equation into standard quadratic form by moving all the terms to one side:

x^2 + 1.5x - 2x = 0

Simplifying, we have:

x^2 - 0.5x = 0

To factor out the common factor of x, we have:

x(x - 0.5) = 0

Setting each factor equal to zero, we have:

x = 0 or x - 0.5 = 0

For the second equation, we can add 0.5 to both sides:

x = 0.5

So the solutions to the equation 2x = x * (x + 1.5) are x = 0 and x = 0.5.

в) -1.3 * (7 + 4x) - 11 = -4.5

To solve this equation, we can start by simplifying the expression on the left side:

-9.1 - 5.2x - 11 = -4.5

Next, we can combine like terms:

-5.2x - 20.1 = -4.5

To isolate x, we can add 20.1 to both sides:

-5.2x = 15.6

Dividing both sides by -5.2, we get:

x = -3

So the solution to the equation -1.3 * (7 + 4x) - 11 = -4.5 is x = -3.

г) (x - 2.3) * x = 4x

To solve this equation, we can start by simplifying the expression on the left side:

x^2 - 2.3x = 4x

Next, we can rearrange the equation into standard quadratic form by moving all the terms to one side:

x^2 - 6.3x = 0

To factor out the common factor of x, we have:

x(x - 6.3) = 0

Setting each factor equal to zero, we have:

x = 0 or x - 6.3 = 0

For the second equation, we can add 6.3 to both sides:

x = 6.3

So the solutions to the equation (x - 2.3) * x = 4x are x = 0 and x = 6.3.

I hope this helps! Let me know if you have any further questions.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос