Вопрос задан 10.08.2018 в 08:20. Предмет Математика. Спрашивает Вишня Олеся.

Если двузначному числу приписать справа цифру 1, то получится число, которое на 226 больше

исходного. Найдите исходное число
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Рейх Санжар.
Исходное число= 25
Если приписать справа единицу, то получится-251
Проверка: 226+25=251
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи мы можем воспользоваться алгебраическим подходом. Пусть исходное двузначное число будет обозначено как "ab", где "a" - десятки, а "b" - единицы. Тогда мы можем записать это число как 10a + b.

Когда мы приписываем справа цифру 1, получается новое число "ab1", которое можно записать как 100a + 10b + 1.

Условие задачи гласит, что новое число на 226 больше исходного, таким образом, мы можем записать уравнение:

100a + 10b + 1 = 10a + b + 226

Теперь мы можем решить это уравнение, чтобы найти значение "a" и "b".

Вычитаем 10a + b из обеих сторон уравнения:

90a + 9b + 1 = 226

Теперь вычитаем 1 из обеих сторон:

90a + 9b = 225

Делим обе стороны на 9:

10a + b = 25

Теперь у нас есть система уравнений:

10a + b = 25 a, b < 10

Мы можем перебрать возможные значения "a" и "b" (от 0 до 9) и найти такие пары, которые удовлетворяют уравнению. Таким образом, мы приходим к выводу, что исходное число равно 14.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос