Вопрос задан 09.08.2018 в 15:10. Предмет Математика. Спрашивает Остойич Михаило.

Используя признаки делимости доказать что каждое из данных чисел составное

1)87,88,1533,1050,8125,1096;2)162,369,8126,1055,9898,2016,87090 заранее мерси
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Котикова Алёна.
1)87делится на 1 на 3 на 87-значит он составной
88делится на 1, 2,4,8,22,44,88-он составной
1533делится на 1,3,1533-он составной
1050делится на 1,2,3,5,10,50 и т д -он составной
8125/1,5, 25,и т д-он составной
1096/1,2,4,...,1096-он составной

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Using Divisibility Tests to Show that Each of the Given Numbers is Composite

1) 87, 88, 1533, 1050, 8125, 1096

To show that a number is composite, we can demonstrate that it has divisors other than 1 and itself. We can use various divisibility tests to check for these divisors.

- 87: 87 is divisible by 3, as the sum of its digits (8 + 7) is 15, which is divisible by 3. Therefore, 87 is composite [[1]]. - 88: 88 is divisible by 2, as it ends in an even number. Therefore, 88 is composite [[2]]. - 1533: 1533 is divisible by 3, as the sum of its digits (1 + 5 + 3 + 3) is 12, which is divisible by 3. Therefore, 1533 is composite [[3]]. - 1050: 1050 is divisible by 2 and 5, as it ends in 0 and the sum of its digits (1 + 0 + 5 + 0) is 6, which is divisible by 3. Therefore, 1050 is composite [[4]]. - 8125: 8125 is divisible by 5, as it ends in 5. Therefore, 8125 is composite [[5]]. - 1096: 1096 is divisible by 2, as it ends in an even number. Therefore, 1096 is composite [[6]].

2) 162, 369, 8126, 1055, 9898, 2016, 87090

- 162: 162 is divisible by 2 and 3, as the sum of its digits (1 + 6 + 2) is 9, which is divisible by 3. Therefore, 162 is composite [[7]]. - 369: 369 is divisible by 3, as the sum of its digits (3 + 6 + 9) is 18, which is divisible by 3. Therefore, 369 is composite [[8]]. - 8126: 8126 is divisible by 2, as it ends in an even number. Therefore, 8126 is composite [[9]]. - 1055: 1055 is divisible by 5, as it ends in 5. Therefore, 1055 is composite [[10]]. - 9898: 9898 is divisible by 2, as it ends in an even number. Therefore, 9898 is composite [[11]]. - 2016: 2016 is divisible by 2, 3, and 6, as the sum of its digits (2 + 0 + 1 + 6) is 9, which is divisible by 3. Therefore, 2016 is composite [[12]]. - 87090: 87090 is divisible by 2, 3, 5, and 6, as the sum of its digits (8 + 7 + 0 + 9 + 0) is 24, which is divisible by 3. Therefore, 87090 is composite [[13]].

By applying the divisibility tests, we have shown that each of the given numbers is composite.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос