
а) 3sin(-4x)-3=0б)cos(4x-П/3) = 1/2в)tg x/4 = - корень из 3,делённое на
3г)sin2x*cosП/6+sinП/6*cos2x = 0д)8sin3x*cos3x = 4Ребя решите пожалуйста а то 2 выходит(

Ответы на вопрос

3sin(-4x)=3
- sin4x=1
sin4x= - 1
4x= - Пи/2+2ПиK, где K принадлежит Z
x= - Пи/8+(Пи/2)К, где к принадлежит Z
б) cos(4x-Пи/3)=1/2
cos4x*cosПи/3+sin4x*sinПи/3=1/2
1/2*cos4x+(корень из 3)/2*sin4x=1/2
cos4x+(корень из 3)*sin 4x=1
cos^2(2x)-sin^2(2x)+(корень из 3)*2sin2x*cos2x- 1=0
cos^2(2x)-sin^2(2x)-sin^2(2x)-cos^2(2x)+(корень из 3)*2sin2x=0
- 2sin^2(2x)+(корень из 3)*2sin2x=0
2sin2x(- sin2x+ корень из 3)=0
2sin2x=0 или sin2x=корень из 3
2x=ПиК, 2x=(-1)в степени к*arcsin(корня из 3)+ПиК, где К принадлежит Z;
х=(Пи/2)К x=(-1)в степени к*arcsin(корня из 3)/2 + Пгде К принадлежит Z;
в) tg(x/4)= - ( корень из 3)/3
x/4=arctg((-корень из 3)/3)+ПиК,где К принадлежит Z;
x= - 10Пи/3+4ПиК, где К принадлежит Z;
г) sin2x*cosПи/6+sinПи/6*сos2x=0
sin(2x+Пи/6)=0
2x+Пи/6=ПиК,где К принадлежит Z;
2х= - Пи/6+ПиК, где К принадлежит Z;
х= -Пи/12+Пи/2К, где К принадлежит Z;
д)8sin3x*cos3x=4
4sin6x-4=0
sin6x=1
6x=Пи/2+2ПиК, где К принадлежит Z
x=Пи/12+(Пи/3)К, где К принадлежит Z



а) 3sin(-4x) - 3 = 0
To solve this equation, we can start by isolating the sine term:
3sin(-4x) = 3
Next, divide both sides of the equation by 3:
sin(-4x) = 1
Now, we need to find the values of x that satisfy this equation. Remember that the sine function has a period of 2π, meaning that any value x that satisfies the equation will also satisfy the equation when 2π is added or subtracted.
Since sin(-θ) = -sin(θ), we can rewrite the equation as:
-sin(4x) = 1
Now, we can solve for x by taking the inverse sine (or arcsine) of both sides:
4x = arcsin(-1)
To find the solutions, we need to consider the range of the arcsine function, which is -π/2 to π/2. Since -1 is within this range, we can proceed:
x = arcsin(-1) / 4
Using a calculator, we can find that arcsin(-1) = -π/2.
Therefore, the solution to the equation is:
x = (-π/2) / 4 = -π/8
So, the solution to the equation 3sin(-4x) - 3 = 0 is x = -π/8.
б) cos(4x - π/3) + 1/2 = 0
To solve this equation, we can isolate the cosine term:
cos(4x - π/3) = -1/2
Next, we can take the inverse cosine (or arccos) of both sides:
4x - π/3 = arccos(-1/2)
To find the solutions, we need to consider the range of the arccos function, which is 0 to π. Since -1/2 is within this range, we can proceed:
4x - π/3 = arccos(-1/2)
Using a calculator, we can find that arccos(-1/2) = 2π/3.
Therefore, the solution to the equation is:
4x - π/3 = 2π/3
Simplifying, we have:
4x = π
x = π/4
So, the solution to the equation cos(4x - π/3) + 1/2 = 0 is x = π/4.
в) tg(x/4) = -√3/3
To solve this equation, we can take the inverse tangent (or arctan) of both sides:
x/4 = arctan(-√3/3)
To find the solutions, we need to consider the range of the arctan function, which is -π/2 to π/2. Since -√3/3 is within this range, we can proceed:
x/4 = arctan(-√3/3)
Using a calculator, we can find that arctan(-√3/3) = -π/6.
Therefore, the solution to the equation is:
x/4 = -π/6
Multiplying both sides by 4, we have:
x = -4π/6
Simplifying, we have:
x = -2π/3
So, the solution to the equation tg(x/4) = -√3/3 is x = -2π/3.
г) sin(2x)cos(π/6) + sin(π/6)cos(2x) = 0
To solve this equation, we can apply the product-to-sum formula for sine:
sin(a)cos(b) + sin(b)cos(a) = sin(a + b)
Using this formula, we can rewrite the equation:
sin(2x + π/6) = 0
Now, we can solve for x by taking the inverse sine (or arcsine) of both sides:
2x + π/6 = arcsin(0)
To find the solutions, we need to consider the range of the arcsine function, which is -π/2 to π/2. Since 0 is within this range, we can proceed:
2x + π/6 = arcsin(0)
Using a calculator, we can find that arcsin(0) = 0.
Therefore, the solution to the equation is:
2x + π/6 = 0
Simplifying, we have:
2x = -π/6
x = -π/12
So, the solution to the equation sin(2x)cos(π/6) + sin(π/6)cos(2x) = 0 is x = -π/12.
д) 8sin(3x)cos(3x) = 4
To solve this equation, we can apply the double angle formula for sine:
sin(2θ) = 2sin(θ)cos(θ)
Using this formula, we can rewrite the equation:
4sin(6x) = 4
Now, we can solve for x by dividing both sides of the equation by 4:
sin(6x) = 1
To find the solutions, we need to consider the range of the sine function, which is -π/2 to π/2. Since 1 is within this range, we can proceed:
6x = arcsin(1)
Using a calculator, we can find that arcsin(1) = π/2.
Therefore, the solution to the equation is:
6x = π/2
x = π/12
So, the solution to the equation 8sin(3x)cos(3x) = 4 is x = π/12.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili