
помогите вычислить предел функции (xy+sinx)/(xy+siny) когда x и y стремятся к бесконечности.


Ответы на вопрос




Calculating the Limit of a Function
To calculate the limit of the function \( \frac{xy+\sin x}{xy+\sin y} \) as \( x \) and \( y \) tend to infinity, we can use the concept of limits in calculus.
The limit of a function as \( x \) and \( y \) tend to infinity can be determined by examining the behavior of the function as \( x \) and \( y \) become very large. Let's proceed with the calculation.
The given function is \( \frac{xy+\sin x}{xy+\sin y} \).
To calculate the limit as \( x \) and \( y \) tend to infinity, we can use the concept of limits and consider the behavior of the function as \( x \) and \( y \) become very large.
Solution
Using the given function \( \frac{xy+\sin x}{xy+\sin y} \), as \( x \) and \( y \) tend to infinity, we can consider the dominant terms in the numerator and denominator.The dominant terms in the numerator are \( xy \) and \( \sin x \), and the dominant terms in the denominator are also \( xy \) and \( \sin y \).
As \( x \) and \( y \) tend to infinity, the terms \( xy \) become dominant in both the numerator and denominator.
Therefore, the limit of the function \( \frac{xy+\sin x}{xy+\sin y} \) as \( x \) and \( y \) tend to infinity is:
\( \lim_{{x,y \to \infty}} \frac{xy+\sin x}{xy+\sin y} = 1 \)
This result is obtained by considering the dominant terms in the numerator and denominator as \( x \) and \( y \) tend to infinity.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili