
В урне 20 шаров: 16 белых, 4 черных. Из урны вынимают сразу 3 шара. Какова вероятность того, что из
них 2 шара будут белые и 1 черный.

Ответы на вопрос

Благоприятных случаев: 16 * 15 * 4
Вероятность:



Problem Analysis
We have an urn with 20 balls, 16 of which are white and 4 are black. We are going to draw 3 balls from the urn. We need to find the probability that 2 of the balls drawn will be white and 1 will be black.Solution
To find the probability, we need to calculate the number of favorable outcomes (drawing 2 white balls and 1 black ball) and divide it by the total number of possible outcomes (drawing any 3 balls from the urn).Let's calculate the probability step by step:
Step 1: Calculate the number of ways to choose 2 white balls out of 16. - This can be calculated using the combination formula: C(n, k) = n! / (k! * (n-k)!), where n is the total number of balls and k is the number of balls we want to choose. - In this case, n = 16 (number of white balls) and k = 2. - So, the number of ways to choose 2 white balls out of 16 is C(16, 2) = 16! / (2! * (16-2)!) = 16! / (2! * 14!) = (16 * 15) / (2 * 1) = 120.
Step 2: Calculate the number of ways to choose 1 black ball out of 4. - Similarly, using the combination formula, the number of ways to choose 1 black ball out of 4 is C(4, 1) = 4! / (1! * (4-1)!) = 4! / (1! * 3!) = (4 * 3) / (1 * 1) = 12.
Step 3: Calculate the total number of ways to choose any 3 balls out of 20. - Again, using the combination formula, the number of ways to choose 3 balls out of 20 is C(20, 3) = 20! / (3! * (20-3)!) = 20! / (3! * 17!) = (20 * 19 * 18) / (3 * 2 * 1) = 1140.
Step 4: Calculate the probability. - The probability of drawing 2 white balls and 1 black ball is the ratio of the number of favorable outcomes to the total number of possible outcomes. - So, the probability is (number of ways to choose 2 white balls out of 16) * (number of ways to choose 1 black ball out of 4) / (number of ways to choose any 3 balls out of 20) = (120 * 12) / 1140 = 1440 / 1140 = 1.26.
Therefore, the probability that 2 of the balls drawn will be white and 1 will be black is approximately 1.26.
Answer
The probability that 2 of the balls drawn will be white and 1 will be black is approximately 1.26.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili