Вопрос задан 03.12.2023 в 07:38. Предмет Математика. Спрашивает Зайкова Ленуся.

ПОМОГИТЕ ОЧЕНЬ СРОЧНО, БАЛЛЫ ПРИСУТСТВУЮТ 1463. Решите системы уравнений: 1) {3x+5y=16,

{2x+3y=9; 2) {9x-7y=95, {4x+y=34; 3) {3x-5y=23, {2x+3y=9; 4) {6x+5y=0, {2x+3y=-8 Смотреть ответ ок:_> ну если она еще есть =_) слушай, можно в группу мне СКУЧНАА:_) AzumiKatsuki AzumiKatsuki Ответ:Ну как то так=|Пошаговое объяснение: Спасибо всегда пожалуйста :D
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

System of Equations

Let's solve the given systems of equations step by step.

System 1: ``` 3x + 5y = 16 2x + 3y = 9 ```

To solve this system, we can use the method of substitution or elimination. Let's use the method of substitution.

From the second equation, we can express `x` in terms of `y`: ``` 2x = 9 - 3y x = (9 - 3y) / 2 ```

Substituting this value of `x` into the first equation, we get: ``` 3((9 - 3y) / 2) + 5y = 16 (27 - 9y) / 2 + 5y = 16 27 - 9y + 10y = 32 27 + y = 32 y = 32 - 27 y = 5 ```

Now, substituting the value of `y` back into the second equation, we can find `x`: ``` 2x + 3(5) = 9 2x + 15 = 9 2x = 9 - 15 2x = -6 x = -6 / 2 x = -3 ```

Therefore, the solution to the first system of equations is `x = -3` and `y = 5`.

System 2: ``` 9x - 7y = 95 4x + y = 34 ```

Again, we can use the method of substitution or elimination. Let's use the method of substitution.

From the second equation, we can express `y` in terms of `x`: ``` y = 34 - 4x ```

Substituting this value of `y` into the first equation, we get: ``` 9x - 7(34 - 4x) = 95 9x - 238 + 28x = 95 37x - 238 = 95 37x = 95 + 238 37x = 333 x = 333 / 37 x = 9 ```

Now, substituting the value of `x` back into the second equation, we can find `y`: ``` 4(9) + y = 34 36 + y = 34 y = 34 - 36 y = -2 ```

Therefore, the solution to the second system of equations is `x = 9` and `y = -2`.

System 3: ``` 3x - 5y = 23 2x + 3y = 9 ```

Let's use the method of elimination to solve this system.

Multiplying the first equation by 2 and the second equation by 3, we get: ``` 6x - 10y = 46 6x + 9y = 27 ```

Subtracting the second equation from the first equation, we eliminate `x`: ``` (6x - 10y) - (6x + 9y) = 46 - 27 6x - 10y - 6x - 9y = 19 -19y = 19 y = 19 / -19 y = -1 ```

Substituting the value of `y` back into the second equation, we can find `x`: ``` 2x + 3(-1) = 9 2x - 3 = 9 2x = 9 + 3 2x = 12 x = 12 / 2 x = 6 ```

Therefore, the solution to the third system of equations is `x = 6` and `y = -1`.

System 4: ``` 6x + 5y = 0 2x + 3y = -8 ```

Again, let's use the method of elimination to solve this system.

Multiplying the second equation by 3, we get: ``` 6x + 5y = 0 6x + 9y = -24 ```

Subtracting the first equation from the second equation, we eliminate `x`: ``` (6x + 9y) - (6x + 5y) = -24 - 0 6x + 9y - 6x - 5y = -24 4y = -24 y = -24 / 4 y = -6 ```

Substituting the value of `y` back into the first equation, we can find `x`: ``` 6x + 5(-6) = 0 6x - 30 = 0 6x = 30 x = 30 / 6 x = 5 ```

Therefore, the solution to the fourth system of equations is `x = 5` and `y = -6`.

I hope this helps! Let me know if you have any further questions.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос