
Вопрос задан 31.07.2018 в 20:00.
Предмет Математика.
Спрашивает Сапарбекова Сания.
Корни квадратного уравнения x^2* px*q = 0 являются целыми числами. Найти p и q, если p +q=112.


Ответы на вопрос

Отвечает Крашенинин Илья.
Корни уравнения x^2 + px + q = 0 - это целые числа x1 и x2.
По теореме Виета
x1 + x2 = -p
x1*x2 = q
По условию
p + q = -x1 - x2 + x1*x2 = 112
Выразим x2 через x1
x2*(x1 - 1) = 112 + x1
x2 = (112 + x1)/(x1 - 1) = (x1 - 1 + 113)/(x1 - 1) = 1 + 113/(x1 - 1)
Так как x1 и x2 - целые, то 113 делится на (x1 - 1) нацело.
Но 113 - простое число, 113 = 1*113 = (-1)(-113), значит:
1) x1 - 1 = 1; x1 = 2; x2 = 1 + 113/1 = 114
x^2 + px + q = (x - 2)(x - 114); p = -116; q = 228
2) x1 - 1 = 113; x1 = 114; x2 = 1 + 113/113 = 2; p = -116; q = 228
3) x1 - 1 = -1; x1 = 0; x2 = 1 + 113/(-1) = -112; p = 112; q = 0
4) x1 - 1 = -113; x1 = -112; x2 = 1 + 113/(-113) = 0; p = 112; q = 0
По теореме Виета
x1 + x2 = -p
x1*x2 = q
По условию
p + q = -x1 - x2 + x1*x2 = 112
Выразим x2 через x1
x2*(x1 - 1) = 112 + x1
x2 = (112 + x1)/(x1 - 1) = (x1 - 1 + 113)/(x1 - 1) = 1 + 113/(x1 - 1)
Так как x1 и x2 - целые, то 113 делится на (x1 - 1) нацело.
Но 113 - простое число, 113 = 1*113 = (-1)(-113), значит:
1) x1 - 1 = 1; x1 = 2; x2 = 1 + 113/1 = 114
x^2 + px + q = (x - 2)(x - 114); p = -116; q = 228
2) x1 - 1 = 113; x1 = 114; x2 = 1 + 113/113 = 2; p = -116; q = 228
3) x1 - 1 = -1; x1 = 0; x2 = 1 + 113/(-1) = -112; p = 112; q = 0
4) x1 - 1 = -113; x1 = -112; x2 = 1 + 113/(-113) = 0; p = 112; q = 0



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для того чтобы найти значения p и q, мы можем использовать метод разложения квадратного уравнения на множители.
У нас есть уравнение вида x^2 + px + qx = 0.
Мы знаем, что корни этого уравнения являются целыми числами, поэтому мы можем представить уравнение в виде (x + m)(x + n) = 0, где m и n - корни уравнения.
Из этого следует, что p = -m - n и q = mn.
Также из условия задачи известно, что p + q = 112.
Теперь найдем все пары целых чисел m и n, для которых m*n = q и m + n = -p.
Мы можем перебрать все возможные пары целых чисел, начиная с 1 и заканчив


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili