Вопрос задан 09.11.2023 в 18:53. Предмет Математика. Спрашивает Туралыкова Дана.

А) Найти НОД(20 и 28); б) Найти НОК(20 и 28).​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Хусаинов Руслан.

Ответ:

Пошаговое объяснение:

  1. 20=2,2,5
  2. 28=2,2,7
  3. НОД(20 и 28)=2*2=4
  4. НОК(20 и 28)=2*2*5*7=140
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

a) НОД (наибольший общий делитель) чисел 20 и 28 можно найти с помощью разложения чисел на простые множители. Разложим 20 и 28: 20 = 2^2 * 5 28 = 2^2 * 7

Теперь найдем общие простые множители для чисел 20 и 28, и возьмем их произведение: Общие простые множители: 2^2 = 4

Таким образом, НОД(20, 28) = 4.

б) НОК (наименьшее общее кратное) чисел 20 и 28 можно найти с помощью их простого разложения: 20 = 2^2 * 5 28 = 2^2 * 7

Теперь найдем простые множители каждого числа и возьмем их произведение, причем включим каждый простой множитель в степени, равные его максимальной степени в разложении исходных чисел: Простые множители: 2^2 * 5 * 7 = 140

Таким образом, НОК(20, 28) = 140.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос