
Вопрос задан 28.07.2018 в 05:48.
Предмет Математика.
Спрашивает Троицкий Артём.
Напишите уравнение касательной к графику функции f(x)=x-3x² в точке с абсциссой Xo=2


Ответы на вопрос

Отвечает Салаватова Фируза.
Уравнение касательной




Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для того чтобы найти уравнение касательной к графику функции f(x) в точке с абсциссой Xo=2, нам нужно найти производную функции f(x) и подставить значение Xo=2.
Сначала найдем производную функции f(x): f'(x) = 1 - 6x
Теперь найдем значение производной в точке Xo=2: f'(2) = 1 - 6*2 = 1 - 12 = -11
Теперь у нас есть значение производной в точке Xo=2. Теперь мы можем использовать формулу уравнения касательной: y - f(Xo) = f'(Xo) * (x - Xo)
Подставим значения: y - f(2) = -11 * (x - 2)
Теперь найдем значение f(2): f(2) = 2 - 3*2² = 2 - 3*4 = 2 - 12 = -10
Подставим это значение в уравнение: y + 10 = -11 * (x - 2)
Таким образом, уравнение касательной к графику функции f(x) в точке с абсциссой Xo=2: y = -11x + 32


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili