(х^2+х) ^2-6(х^2+х) +8=0
Ответы на вопрос
Ответ:
Ответ:
Пошаговое объяснение:
x²+x=t
t²-6t+8=0
t1=4; t2=2
1)x²+x=4⇒x²+x-4=0⇒D=1+16=17⇒x1=(-1+√17)/2; x2=(-1-√17)/2
2)x²+x=2⇒x²+x-2=0⇒x3=1; x4=-2
To solve the quadratic equation , you can use substitution to simplify it and then solve for (x.
Let . Now, we can rewrite the equation as:
This is a quadratic equation in , which is easier to solve. To factor or solve for (y, we can rewrite the equation as:
Now, we can solve for (y\ by setting each factor equal to zero:
Now that we have found the possible values of y\, we can revert to the substitution \(y = x^2 + x:
For :
This is a quadratic equation in (x, and we can solve it using the quadratic formula:
In this case, . Plugging these values into the formula:
Now, take the square root:
This gives two solutions:
For :
Again, we can solve this as a quadratic equation:
So, the solutions to the original equation are and for , and and for .
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
