Вопрос задан 21.10.2023 в 21:45. Предмет Математика. Спрашивает Майер Елизавета.

Известно что в каждом из трёх идущих подряд месяцев оказалось четыре воскресения. Докажите что один

из этих месяцев- февраль.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Козачок Павел.
В январе у нас 31 день,так?- Так
В феврале 28 дней,а в високосном году 29,но в этом году 29. 
В декабре 31 день.
Получается это 4 недели и получается нужное нам колличество.
Теперь разберёмся с январём. Начинаем считать с четверга(в четверг  1 января) получается 4 недели и 4 дня,а значит и 4 воскресения.
Так,теперь про декабрь. Начинаем считать со вторника (во вторник было 1 декабря) получается это 4 недели и 6 дней,соответственно вот они наши 4 воскресения.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Хорошо, давайте разберемся в этой задаче.

Пусть у нас есть три месяца подряд, в каждом из которых четыре воскресения. Поскольку в неделе семь дней, а четыре воскресения означают четыре разных недели с воскресеньем, мы можем утверждать, что у нас есть четыре разных недели, в которые входят воскресенья.

Теперь рассмотрим варианты:

  1. Если первый месяц начинается с воскресенья, то второй месяц начинается с понедельника, а третий - со вторника. Таким образом, второй месяц имеет четыре воскресения и является февралем.

  2. Если первый месяц начинается с понедельника, то второй месяц начинается с вторника, а третий - с среды. В этом случае, третий месяц содержит четыре воскресения. Однако это означает, что первый месяц содержит только три воскресения, что противоречит условию задачи.

  3. Если первый месяц начинается со вторника, то второй месяц начинается с среды, а третий - с четверга. В этом случае, третий месяц содержит только три воскресения, что снова противоречит условию задачи.

  4. Если первый месяц начинается с среды, то второй месяц начинается с четверга, а третий - с пятницы. В этом случае, третий месяц содержит только три воскресения, что снова противоречит условию задачи.

  5. Если первый месяц начинается с четверга, то второй месяц начинается с пятницы, а третий - с субботы. В этом случае, третий месяц содержит только три воскресения, что снова противоречит условию задачи.

  6. Если первый месяц начинается с пятницы, то второй месяц начинается с субботы, а третий - с воскресенья. В этом случае, второй месяц содержит четыре воскресения и является февралем.

Итак, из всех возможных вариантов, только в первом случае второй месяц оказывается февралем. Таким образом, мы доказали, что одним из этих месяцев является февраль.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос