Вопрос задан 08.10.2023 в 22:29. Предмет Математика. Спрашивает Ерёмина Катя.

4^(log4 5)+log7 2-log7 14

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Константинов Артём.

5+log₇(2/14) = 5 + log₇(1/7) = 5 - 1 =4

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To simplify the expression 4^(log4 5) + log7 2 - log7 14, we can break it down step by step.

  1. Use the property that 4^(log4 5) is equal to 5. This is because the base of the logarithm (4) matches the base of the exponent (4), so the two operations cancel each other out. So, the expression becomes: 5 + log7 2 - log7 14

  2. Logarithms can be used to combine or separate exponents, so you can rewrite log7 14 as log7 (2 * 7). Now, the expression is: 5 + log7 2 - (log7 2 + log7 7)

  3. Logarithms also have the property that log(a * b) = log(a) + log(b). Apply this property to log7 (2 * 7): 5 + log7 2 - (log7 2 + log7 7) = 5 + log7 2 - log7 2 - log7 7

  4. Finally, since we have log7 2 - log7 2, they cancel each other out: 5 + 0 - log7 7

  5. Simplify further by removing the 0: 5 - log7 7

So, the simplified expression is 5 - log7 7.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос