1)(4x-1)^2-(5x+2)^2+(8x-7)(8x+7)=28(6-x) 2)(2x-7)^2+(3x-5)^2-2(64-29x)=(4x-9)(9+4x)
Ответы на вопрос
To solve the given equations, we'll first simplify them and then proceed to find the values of 'x' that satisfy the equations.
- (4x-1)^2 - (5x+2)^2 + (8x-7)(8x+7) = 28(6-x)
Let's simplify the left side of the equation:
(4x-1)^2 - (5x+2)^2 + (8x-7)(8x+7) = 28(6-x)
Expand and simplify each term:
(16x^2 - 8x + 1) - (25x^2 + 20x + 4) + (64x^2 - 49) = 28(6-x)
Now, combine like terms:
16x^2 - 8x + 1 - 25x^2 - 20x - 4 + 64x^2 - 49 = 28(6-x)
Combine the x^2, x, and constant terms:
(16x^2 - 25x^2 + 64x^2) + (-8x - 20x) + (1 - 4 - 49) = 28(6-x)
55x^2 - 28x - 52 = 28(6-x)
Now, distribute the 28 on the right side:
55x^2 - 28x - 52 = 168 - 28x
Move all terms to one side of the equation:
55x^2 - 28x - 28x - 52 - 168 = 0
Combine like terms:
55x^2 - 56x - 220 = 0
Now, we have a quadratic equation. Let's solve it using the quadratic formula:
x = (-b ± √(b² - 4ac)) / (2a)
In this equation, a = 55, b = -56, and c = -220.
x = (-(-56) ± √((-56)² - 4 * 55 * (-220))) / (2 * 55)
x = (56 ± √(3136 + 48400)) / 110
x = (56 ± √51536) / 110
x = (56 ± 227) / 110
Now, we have two possible solutions:
- x = (56 + 227) / 110 = 283 / 110
- x = (56 - 227) / 110 = -171 / 110
So, the solutions to the first equation are x = 283/110 and x = -171/110.
- (2x-7)^2 + (3x-5)^2 - 2(64-29x) = (4x-9)(9+4x)
Let's simplify the left side of the equation:
(2x-7)^2 + (3x-5)^2 - 2(64-29x) = (4x-9)(9+4x)
Expand and simplify each term:
(4x^2 - 28x + 49) + (9x^2 - 30x + 25) - 2(64-29x) = (4x^2 - 9)(9+4x)
Combine like terms:
4x^2 + 9x^2 - 28x - 30x + 49 + 25 - 2(64-29x) = 4x^2 - 9
Combine like terms on both sides:
13x^2 - 58x + 74 - 2(64-29x) = 4x^2 - 9
Now, distribute the -2 on the left side:
13x^2 - 58x + 74 - 128 + 58x = 4x^2 - 9
Combine like terms:
13x^2 - 54 = 4x^2 - 9
Move all terms to one side of the equation:
13x^2 - 4x^2 - 54 + 9 = 0
Combine like terms:
9x^2 - 45 = 0
Now, divide both sides by 9 to isolate x^2:
x^2 - 5 = 0
Now, add 5 to both sides:
x^2 = 5
Take the square root of both sides (remembering both positive and negative roots):
x = ±√5
So, the solutions to the second equation are x = √5 and x = -√5.
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
