Вопрос задан 04.10.2023 в 03:45. Предмет Математика. Спрашивает Золотарев Михаил.

2x^2+4x+7=0 Решите уравнение срочно!!!

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Прназарова Ерке.

Ответ:

Пошаговое объяснение:

2x^2+4x+7=0

D=16-56= -40

D= -40

D<0 , нет корней! ( действительных)

0 0
Отвечает Бычуткин Дмитрий.

\displaystyle\\2x^2+4x+7=0\\\\D=4^2-4*2*7=16-56=-40\\\\D

Решений нет, так как дискриминант меньше 0.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте решим это уравнение квадратное уравнение с помощью квадратного уравнения:

Уравнение: 2x^2 + 4x + 7 = 0

Дискриминант (D) для квадратного уравнения ax^2 + bx + c = 0 вычисляется по формуле D = b^2 - 4ac.

В данном случае: a = 2 b = 4 c = 7

Вычислим дискриминант:

D = (4)^2 - 4 * 2 * 7 D = 16 - 56 D = -40

Дискриминант отрицательный, что означает, что уравнение не имеет действительных корней. Вместо этого у нас есть два комплексных корня, которые можно найти с помощью формулы:

x = (-b ± √D) / (2a)

x1 = (-4 + √(-40)) / (2 * 2) x2 = (-4 - √(-40)) / (2 * 2)

x1 = (-4 + 2√10i) / 4 x2 = (-4 - 2√10i) / 4

Упростим выражения, разделив числитель и знаменатель на 2:

x1 = (-2 + √10i) / 2 x2 = (-2 - √10i) / 2

Таким образом, корни этого уравнения равны: x1 = (-2 + √10i)/2 x2 = (-2 - √10i)/2

Это комплексные числа, и они являются решениями данного квадратного уравнения.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос