Вопрос задан 30.09.2023 в 20:05. Предмет Математика. Спрашивает Иванов Артем.

Найдите целые решения системы неравенства 1,7+2,4х>1,2х+4,1 3,8-4,6х<=7,8-6,6х

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ощепков Даниил.

Ответ:

1,7+2,4x>1,2x+4,1

2,4x-1,2x>4,1-1,7

1,2x>2,4

x>2,4÷1,2

x>2

3,8-4,6x≤7,8-6,6x

-4,6x+6,6x≤7,8-3,8

2x≤4

x≤4÷2

x≤2

нету пересечении вроде

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения системы неравенств сначала упростим каждое неравенство по отдельности:

  1. Для первого неравенства: 1,7 + 2,4x > 1,2x + 4,1

    Вычитаем 1,2x из обеих сторон: 1,7 + 2,4x - 1,2x > 4,1

    Получаем: 1,2x + 1,7 > 4,1

    Вычитаем 1,7 из обеих сторон: 1,2x > 4,1 - 1,7

    1,2x > 2,4

    Делим обе стороны на 1,2 (положительное число, поэтому неравенство не меняет знак): x > 2

  2. Для второго неравенства: 3,8 - 4,6x ≤ 7,8 - 6,6x

    Вычитаем 3,8 из обеих сторон: -4,6x ≤ 7,8 - 6,6x - 3,8

    Получаем: -4,6x ≤ 4 - 6,6x

    Теперь добавим 6,6x к обеим сторонам (обратите внимание, что мы меняем знак неравенства, так как добавляем отрицательное число к обеим сторонам): -4,6x + 6,6x ≤ 4 - 6,6x + 6,6x

    Это упрощается до: 0 ≤ 4

Так как 0 всегда меньше или равно 4, второе неравенство выполняется для любых значений x.

Итак, у нас есть два неравенства:

  1. x > 2 (из первого неравенства)
  2. 0 ≤ 4 (из второго неравенства)

Оба неравенства выполняются при любых значениях x, которые больше 2. Таким образом, решение системы неравенств - это x > 2.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте разберемся с каждым неравенством по отдельности:

  1. 1,7 + 2,4x > 1,2x + 4,1

Переносим все члены с x на одну сторону неравенства, чтобы избавиться от x в правой части:

1,7 - 4,1 > 1,2x - 2,4x

Упрощаем:

-2,4 > -1,2x

Теперь делим обе стороны на -1,2. Обратите внимание, что мы меняем знак неравенства при делении на отрицательное число:

-2,4 / (-1,2) < x

2 < x

  1. 3,8 - 4,6x <= 7,8 - 6,6x

Переносим все члены с x на одну сторону неравенства:

3,8 - 7,8 <= -6,6x + 4,6x

-4 <= -2x

Теперь делим обе стороны на -2. И снова обратите внимание, что мы меняем знак неравенства при делении на отрицательное число:

-4 / (-2) >= x

2 >= x

Теперь у нас есть два неравенства:

  1. 2 < x
  2. 2 >= x

Чтобы найти целые решения этой системы неравенств, мы можем объединить эти два неравенства в одно:

2 < x <= 2

Целые числа, удовлетворяющие этому неравенству, - это x = 3 и все целые числа, большие 2.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос