Вопрос задан 29.09.2023 в 20:50. Предмет Математика. Спрашивает Викторова Мария.

1). (7x +1) - (9x +3) = 5 2). 3(6x-1) = 2(9x+1) - 103). 4(5x+2)=10(2x-3)+154). 2(7x - 7) =

7(2x-3) + 75). 3(x+6) = x +2(x+9)​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ильина Маша.

Ответ:

1). (7x +1) - (9x +3) = 5

7х+1-9х-3=5

7х-9х=5+3-1

-2х=7

2х=-7

х=-3.5

2). 3(6x-1) = 2(9x+1) - 10

18х-3=18х+2-10

18х-18х=-9+3

х=-6

3). 4(5x+2)=10(2x-3)+15

20х+8=20х-30+15

20х-20х=-30+15-8

х=-23

4). 2(7x - 7) = 7(2x-3) + 7

14х-14=14х-21+7

14х-14х=0

х=0

5). 3(x+6) = x +2(x+9)

3х+18=х+2х+18

6х=0

х=0

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Let's solve each equation step by step:

  1. (7x+1)(9x+3)=5(7x + 1) - (9x + 3) = 5

First, distribute the negative sign on the left side:

7x+19x3=57x + 1 - 9x - 3 = 5

Now, combine like terms:

(7x9x)+(13)=5(7x - 9x) + (1 - 3) = 5

Simplify further:

2x2=5-2x - 2 = 5

Add 2 to both sides to isolate the variable:

2x2+2=5+2-2x - 2 + 2 = 5 + 2

2x=7-2x = 7

Now, divide both sides by -2 to find the value of x:

x=72x = -\frac{7}{2} or x=3.5x = -3.5

  1. 3(6x1)=2(9x+1)103(6x - 1) = 2(9x + 1) - 10

First, distribute on both sides:

18x3=18x+21018x - 3 = 18x + 2 - 10

Now, combine like terms:

18x3=18x818x - 3 = 18x - 8

Subtract 18x from both sides to isolate the constant term:

3=8-3 = -8

This equation has no solution because the variable xx cancels out.

  1. 4(5x+2)=10(2x3)+154(5x + 2) = 10(2x - 3) + 15

First, distribute on both sides:

20x+8=20x30+1520x + 8 = 20x - 30 + 15

Now, combine like terms:

20x+8=20x1520x + 8 = 20x - 15

Subtract 20x from both sides to isolate the constant term:

8=158 = -15

This equation also has no solution because the variable xx cancels out.

  1. 2(7x7)=7(2x3)+72(7x - 7) = 7(2x - 3) + 7

First, distribute on both sides:

14x14=14x21+714x - 14 = 14x - 21 + 7

Now, combine like terms:

14x14=14x1414x - 14 = 14x - 14

Subtract 14x from both sides to isolate the constant term:

14=14-14 = -14

This equation is always true, which means it has infinitely many solutions. Any value of xx will satisfy this equation.

  1. 3(x+6)=x+2(x+9)3(x + 6) = x + 2(x + 9)

First, distribute on both sides:

3x+18=x+2x+183x + 18 = x + 2x + 18

Now, combine like terms:

3x+18=3x+183x + 18 = 3x + 18

Subtract 3x from both sides to isolate the constant term:

18=1818 = 18

This equation is also always true, which means it has infinitely many solutions. Any value of xx will satisfy this equation.

In summary, equations 2 and 3 have no solutions, and equations 4 and 5 have infinitely many solutions. Equation 1 has a single solution, x=72x = -\frac{7}{2}.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос