
| 2-х |+ 3 = 10| 2х | + 3 = 105 - | х | = 2


Ответы на вопрос

Ответ:
................,..................




It looks like you have an equation involving absolute values. Let's solve it step by step:
|2x| + 3 = 10 |2x| = 10 - 3 |2x| = 7
Now, you have two possible cases for |2x|:
Case 1: 2x = 7 2x = 7 x = 7/2
Case 2: 2x = -7 2x = -7 x = -7/2
Now, let's move on to the second equation:
|2x| + 3 = 105 - |x| = 2
We already know that |2x| = 7, so we can substitute this value into the equation:
7 + 3 = 105 - |x| = 2
Now, solve for |x|:
10 = 105 - |x|
Subtract 105 from both sides:
-95 = -|x|
To remove the negative sign, multiply both sides by -1:
95 = |x|
So, you have two possible values for |x|:
- |x| = 95
- |x| = 7
Now, let's consider both cases:
Case A: |x| = 95 Since |x| is always positive or zero, this case is not valid because it results in a contradiction.
Case B: |x| = 7 This is consistent with the earlier result for |2x| = 7.
So, the solution to the equation is x = 7/2 or x = -7/2 when |x| = 7.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili