
4. log_2(x - 3) + 3 = log_2(3x + 1)


Ответы на вопрос

Ответ: log_2(x - 3) + 3 = log_2(3x + 1)
x=5



To solve the equation log₂(x - 3) + 3 = log₂(3x + 1), you can use the properties of logarithms. Here are the steps to solve it:
Start by subtracting log₂(x - 3) from both sides of the equation to isolate the logarithmic term on one side:
3 = log₂(3x + 1) - log₂(x - 3)
Use the property of logarithms that states that the difference of logarithms with the same base is equal to the logarithm of the quotient:
3 = log₂[(3x + 1) / (x - 3)]
Now, remove the logarithm by converting the equation into an exponential form:
2^3 = (3x + 1) / (x - 3)
Simplify the left side:
8 = (3x + 1) / (x - 3)
To get rid of the fraction, multiply both sides of the equation by (x - 3):
8(x - 3) = 3x + 1
Distribute on the left side:
8x - 24 = 3x + 1
Move the 3x term to the left side by subtracting 3x from both sides:
8x - 3x - 24 = 1
Simplify:
5x - 24 = 1
Add 24 to both sides:
5x = 1 + 24 5x = 25
Finally, divide both sides by 5 to isolate x:
x = 25 / 5 x = 5
So, the solution to the equation log₂(x - 3) + 3 = log₂(3x + 1) is x = 5.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili