
(2x² + 2y = 5, -x + 3y = 6;


Ответы на вопрос

To solve the system of equations and , we can use either the substitution method or the elimination method. I'll demonstrate the elimination method here.
First, let's multiply the second equation by 2 to make it easier to eliminate one of the variables:
Original equations:
...(1)
...(2)
Multiply equation (2) by 2:
...(3)
Now, let's add equation (1) and equation (3) to eliminate :
Simplify the equation:
...(4)
Next, we can rearrange equation (4) to isolate :
...(5)
Now, let's focus on equation (2) again:
...(6)
We can rearrange equation (6) to isolate :
...(7)
Now that we have expressions for in terms of from equation (7) and equation (5), we can set them equal to each other:
Solving for in each case will give us possible values for . After that, we can use these values to find the corresponding values. Please note that this equation may result in real or complex solutions depending on the specific values involved.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili