Вопрос задан 02.08.2023 в 15:30. Предмет Математика. Спрашивает Іващенко Вікторія.

3. В 96 м одна от другой растут две сосны. Высота одной 38 м, а другой — 10 м. Найдите расстояние

(в метрах) между их верхушками.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Максимова Александра.
По теореме Пифагора
a=38-10=28 м - один катет
b=96 м - второй катет (по условию)
x=\sqrt{a^{2}+b^{2}}=\sqrt{28^{2}+96^{2}}=\sqrt{784+9216}=\sqrt{10000}=100 м
Ответ: 100 метров.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти расстояние между верхушками двух сосен, можно использовать теорему Пифагора, так как вершины сосен и точка между ними образуют прямоугольный треугольник. Высоты сосен будут катетами треугольника, а расстояние между вершинами - гипотенузой.

Высота первой сосны: 38 м Высота второй сосны: 10 м

По теореме Пифагора: Гипотенуза^2 = Катет1^2 + Катет2^2

Гипотенуза^2 = 38^2 + 10^2 Гипотенуза^2 = 1444 + 100 Гипотенуза^2 = 1544

Гипотенуза = √1544 Гипотенуза ≈ 39.29 м

Таким образом, расстояние между верхушками сосен составляет примерно 39.29 метра.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос