Вопрос задан 29.07.2023 в 22:43. Предмет Математика. Спрашивает Плинин Саша.

Решити 2х+3у=9 / 4х+3у=27 спосбом соложения 2) 2х+3у=2 / -2х+5у=-18 3) х+4у=39 / 2х-у=15

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Резинько Алина.
2х+3х=9
1)2+3=5
2)9-5=4
3)х=4
Я тебе другие ответы потом напишу,подожди.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the systems of equations using the method of addition (also known as the method of elimination), follow these steps:

  1. 2x + 3y = 9 4x + 3y = 27

We want to eliminate one variable by adding the two equations together. We'll start by making the coefficients of y in both equations the same so that when we add them, the y term cancels out. To do this, multiply the first equation by -1:

-1 * (2x + 3y) = -1 * 9 -2x - 3y = -9

Now the equations are:

-2x - 3y = -9 4x + 3y = 27

Now add the two equations:

(-2x - 3y) + (4x + 3y) = -9 + 27 2x = 18

Divide both sides by 2 to solve for x:

x = 18 / 2 x = 9

Now, substitute the value of x back into one of the original equations to solve for y. Let's use the first equation:

2x + 3y = 9 2 * 9 + 3y = 9 18 + 3y = 9

Subtract 18 from both sides:

3y = 9 - 18 3y = -9

Divide both sides by 3 to solve for y:

y = -9 / 3 y = -3

The solution to the first system of equations is x = 9 and y = -3.

  1. 2x + 3y = 2 -2x + 5y = -18

Since the x-coefficients are negatives of each other, we can directly add the two equations to eliminate x:

(2x + 3y) + (-2x + 5y) = 2 - 18 3y + 5y = -16 8y = -16

Divide both sides by 8 to solve for y:

y = -16 / 8 y = -2

Now, substitute the value of y back into one of the original equations to solve for x. Let's use the first equation:

2x + 3y = 2 2x + 3(-2) = 2 2x - 6 = 2

Add 6 to both sides:

2x = 2 + 6 2x = 8

Divide both sides by 2 to solve for x:

x = 8 / 2 x = 4

The solution to the second system of equations is x = 4 and y = -2.

  1. x + 4y = 39 2x - y = 15

In this case, we don't need to make any adjustments to the equations since there is already a variable with opposite coefficients (y and -y). We can directly add the two equations to eliminate y:

(x + 4y) + (2x - y) = 39 + 15 3x + 3y = 54

Now, divide both sides by 3 to solve for x:

x + y = 18

Now, we have an equation with both x and y, but we don't have enough information to find the exact values of x and y separately. However, if you have more information or another equation to work with, you may be able to find the specific values of x and y. As it stands, the solution to the third system of equations is x + y = 18.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос