
5+9+13+...+(4n +1)=324


Ответы на вопрос




To solve the equation 5 + 9 + 13 + ... + (4n + 1) = 324, we need to find the value of 'n' that satisfies this equation.
The given series is an arithmetic series with a common difference of 4, starting with the first term 5 and ending with the term (4n + 1). We can use the formula for the sum of an arithmetic series to find the value of 'n'.
The formula for the sum of an arithmetic series is: Sum = (n/2) * (first term + last term)
In this case, the first term (a) is 5, and the last term (l) is (4n + 1). So, the sum is 324:
324 = (n/2) * (5 + 4n + 1)
Now, let's simplify the equation:
324 = (n/2) * (4n + 6)
Next, let's get rid of the fraction by multiplying both sides by 2:
648 = n * (4n + 6)
Now, we have a quadratic equation. Let's rearrange it to be in standard form:
4n^2 + 6n - 648 = 0
To solve this quadratic equation, we can use factoring, completing the square, or the quadratic formula. In this case, factoring is the easiest method:
4n^2 + 6n - 648 = (4n + 54)(n - 12) = 0
Now, set each factor to zero and solve for 'n':
4n + 54 = 0 4n = -54 n = -54/4 n = -13.5
n - 12 = 0 n = 12
We obtain two solutions for 'n': n = -13.5 and n = 12.
However, in this context, it doesn't make sense to have a negative number of terms in the series. Thus, the valid solution for 'n' is n = 12.
So, the value of 'n' that satisfies the equation is 12.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili