
Вопрос задан 29.07.2023 в 19:25.
Предмет Математика.
Спрашивает Унгуряну Настёна.
Прошу очень надо!y=(x^3+1)/(x^2) найдите асимптоты


Ответы на вопрос

Отвечает Макарова Милена.
Вертикальная асимптота x=0.
поиск горизонтальной асимптоты:
lim(x->∞) (x^3 + 1)/(x^2) = lim (x + (1/x^2)) = ∞,
lim(x->-∞)(x^3 + 1)/(x^2) = lim (x + (1/x^2)) = -∞.
Горизонтальных асимптот нет.
Поиск наклонных асимптот:
предполагаемая асимптота y = ax+b.
lim(x->∞) ( (x^3 + 1)/(x^2)) - (ax+b) = lim ( x^3 + 1 - a*x^3 - b*x^2)/(x^2) =
= [при a = 1 ] = lim (1 - b*x^2)/x^2 = [ b=0] = lim (1/x^2) = 0.
Наклонная асимптота y=x.
Аналогично:
lim(x->-∞) ( (x^3 + 1)/(x^2) ) - (ax+b) ) = [ a=1, b=0] =
= lim ( x + (1/x^2) - x ) = lim (1/x^2) = 0.
Наклонная асимптота y=x. (Является асимптотой на +∞ и на -∞).
поиск горизонтальной асимптоты:
lim(x->∞) (x^3 + 1)/(x^2) = lim (x + (1/x^2)) = ∞,
lim(x->-∞)(x^3 + 1)/(x^2) = lim (x + (1/x^2)) = -∞.
Горизонтальных асимптот нет.
Поиск наклонных асимптот:
предполагаемая асимптота y = ax+b.
lim(x->∞) ( (x^3 + 1)/(x^2)) - (ax+b) = lim ( x^3 + 1 - a*x^3 - b*x^2)/(x^2) =
= [при a = 1 ] = lim (1 - b*x^2)/x^2 = [ b=0] = lim (1/x^2) = 0.
Наклонная асимптота y=x.
Аналогично:
lim(x->-∞) ( (x^3 + 1)/(x^2) ) - (ax+b) ) = [ a=1, b=0] =
= lim ( x + (1/x^2) - x ) = lim (1/x^2) = 0.
Наклонная асимптота y=x. (Является асимптотой на +∞ и на -∞).



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для определения асимптот функции , нужно рассмотреть два типа асимптот: вертикальные асимптоты и наклонные (горизонтальные) асимптоты.
- Вертикальные асимптоты:
Вертикальные асимптоты возникают тогда, когда значение функции стремится к бесконечности или минус бесконечности при определенных значениях .
Чтобы найти вертикальные асимптоты, решим уравнение , так как знаменатель не может быть равен нулю:
Таким образом, у функции есть вертикальная асимптота .
- Наклонные асимптоты:
Наклонные асимптоты возникают, когда функция стремится к прямой линии при , стремящемся к бесконечности.
Для нахождения наклонных асимптот, вычислим предел функции при и :
Таким образом, у функции нет наклонных асимптот.
Итак, асимптоты данной функции:
- Вертикальная асимптота: .
- Нет наклонных асимптот.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili