Вопрос задан 29.07.2023 в 19:06.
Предмет Математика.
Спрашивает Траниловская Яна.
стороны оснований правильной треугольной усечнной пирамиды равны 4дм и 2дм, а боковое ребро равно
2дм. Найдите высоту и апофему пирамиды.Ответы на вопрос
Отвечает Быков Виктор.
ВС равно половине большего основания:
BC = 4 дм / 2 = 2 дм
AD равно половине меньшего основания:
AD = 2 дм / 2 = 1 дм
Если провести параллельный отрезок DB1 из точки D параллельно AB до ребра BC большего основания, то получится треугольник, причём:
B1C = BC - AD = 2 - 1 = 1 дм
DB1 = AB
Мы получили прямоугольный треугольник DB1C,
теорема Пифагора для него:
DB1^2 + B1C^2 = DC^2, подставляем
DB1^2 + 1^2 = 2^2
DB1^2 = 4 - 1 = 3
DB1 = sqrt(3) - корень из трех
F = AB = DB1 = sqrt(3)
Осталось найти высоту H:
Т к большее основание - правильный треугольник, то OB - это перпендикуляр к BC
Делаем тоже самое - проводим параллельный отрезок отрезку H, но из точки A и второй точкой A1 на большем основании:
Так как ребра равнобедренных оснований большего в два раза больше меньшего, то исходя из симметрии оснований BO = 2 AO1
Тогда BA1 = AO1 = A1O = BO/2
Теперь рассмотрим треугольник BOC - прямоугольный
угол BCO = 60 / 2 = 30 град - половине угла равнобедренного треугольного основания.
Значит угол BOC = 180 - 90 - 30 = 60 град
Тогда из соотношения синуса:
BC / sin(60) = BO / sin(30)
BC = 2
BO = 2 * sin(30) / sin(60) = 2 * 0.5 / (sqrt(3) / 2) = 2 / sqrt(3)
значит BA1 = BO/2 = 2 / sqrt(3) / 2 = 1/sqrt(3)
но по правилу Пифагора:
F^2 = BA1^2 + H^2
подставляем
sqrt(3)^2 = 1/sqrt(3)^2 + H^2
H^2 = 3 - 1/3 =(9 - 1)/3 = 8/3
H = sqrt(8)/sqrt(3) = 2*sqrt(2/3)
Ответ: Апофема равна sqrt(3), высота усеченной пирамиды равна 2*sqrt(2/3)
BC = 4 дм / 2 = 2 дм
AD равно половине меньшего основания:
AD = 2 дм / 2 = 1 дм
Если провести параллельный отрезок DB1 из точки D параллельно AB до ребра BC большего основания, то получится треугольник, причём:
B1C = BC - AD = 2 - 1 = 1 дм
DB1 = AB
Мы получили прямоугольный треугольник DB1C,
теорема Пифагора для него:
DB1^2 + B1C^2 = DC^2, подставляем
DB1^2 + 1^2 = 2^2
DB1^2 = 4 - 1 = 3
DB1 = sqrt(3) - корень из трех
F = AB = DB1 = sqrt(3)
Осталось найти высоту H:
Т к большее основание - правильный треугольник, то OB - это перпендикуляр к BC
Делаем тоже самое - проводим параллельный отрезок отрезку H, но из точки A и второй точкой A1 на большем основании:
Так как ребра равнобедренных оснований большего в два раза больше меньшего, то исходя из симметрии оснований BO = 2 AO1
Тогда BA1 = AO1 = A1O = BO/2
Теперь рассмотрим треугольник BOC - прямоугольный
угол BCO = 60 / 2 = 30 град - половине угла равнобедренного треугольного основания.
Значит угол BOC = 180 - 90 - 30 = 60 град
Тогда из соотношения синуса:
BC / sin(60) = BO / sin(30)
BC = 2
BO = 2 * sin(30) / sin(60) = 2 * 0.5 / (sqrt(3) / 2) = 2 / sqrt(3)
значит BA1 = BO/2 = 2 / sqrt(3) / 2 = 1/sqrt(3)
но по правилу Пифагора:
F^2 = BA1^2 + H^2
подставляем
sqrt(3)^2 = 1/sqrt(3)^2 + H^2
H^2 = 3 - 1/3 =(9 - 1)/3 = 8/3
H = sqrt(8)/sqrt(3) = 2*sqrt(2/3)
Ответ: Апофема равна sqrt(3), высота усеченной пирамиды равна 2*sqrt(2/3)
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для нахождения высоты и апофемы правильной треугольной усеченной пирамиды можно воспользоваться формулами. Пусть a и b - стороны оснований, c - боковое ребро, h - высота, а f - апофема пирамиды.
Формула для высоты h правильной треугольной пирамиды: h = √(c^2 - ( (a - b) / 2 )^2)
Формула для апофемы f правильной треугольной пирамиды: f = √(h^2 + ( (a + b) / 2 )^2)
Дано: a = 4 дм b = 2 дм c = 2 дм
Вычислим высоту h: h = √(2^2 - ( (4 - 2) / 2 )^2) h = √(4 - 1) h = √3 дм
Вычислим апофему f: f = √(3^2 + ( (4 + 2) / 2 )^2) f = √(9 + 3^2) f = √(9 + 9) f = √18 дм
Ответ: Высота пирамиды h = √3 дм (приблизительно 1.732 дм) Апофема пирамиды f = √18 дм (приблизительно 4.243 дм)
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
