
Y=(x 4)(x^2 3x 2)/x 1


Ответы на вопрос





It seems like you have an expression involving polynomials that you would like to simplify. To make sure I understand the expression correctly, I'll rewrite it with proper formatting:
Y = (x^4)(x^2 + 3x + 2) / (x - 1)
To simplify this expression, we can start by factoring the numerator and denominator:
Numerator: x^4 * (x^2 + 3x + 2)
We can factor the quadratic expression x^2 + 3x + 2: x^2 + 3x + 2 = (x + 1)(x + 2)
So, the numerator becomes: x^4 * (x + 1)(x + 2)
Denominator: x - 1
Now we have the expression in factored form:
Y = [x^4 * (x + 1)(x + 2)] / (x - 1)
At this point, we can check if there are any common factors between the numerator and denominator that can be canceled out:
Notice that (x - 1) is a common factor between the numerator and denominator. We can cancel it out:
Y = [x^4 * (x + 1)(x + 2)] / (x - 1) = [x^4 * (x + 1)(x + 2)] / (x - 1) * (x + 1) / (x + 1) = [x^4 * (x + 1)(x + 2)(x + 1)] / [(x - 1)(x + 1)]
Now, let's expand the numerator:
Y = [x^4 * (x + 1)(x + 2)(x + 1)] / [(x - 1)(x + 1)] = [x^4 * (x^2 + 3x + 2)(x + 1)] / [(x - 1)(x + 1)]
Now, we can see that (x + 1) is a common factor between the numerator and denominator, and we can cancel it out as well:
Y = [x^4 * (x^2 + 3x + 2)(x + 1)] / [(x - 1)(x + 1)] * 1 / (x + 1) = [x^4 * (x^2 + 3x + 2)] / (x - 1)
So the simplified expression for Y is:
Y = x^4 * (x^2 + 3x + 2) / (x - 1)


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili