
Решите log^2 3(27x)+log3(x)=-7


Ответы на вопрос




To solve the equation log^2₃(27x) + log₃(x) = -7, we can use some logarithmic properties. Let's start by applying those properties step by step:
- Product Rule of Logarithms: logₐ(b) + logₐ(c) = logₐ(b * c)
- Power Rule of Logarithms: logₐ(b^m) = m * logₐ(b)
First, we'll use the Product Rule to combine the logarithms:
log³(27x * x) = log³(27x²)
Now, using the Power Rule, we can bring down the exponent:
log³(27x²) = 2 * log³(27x)
Next, we know that logₐ(a) = 1, so:
log³(27) = 1
Now, rewrite 27 as 3^3:
log³(3³) = 1
Now we have:
3 * log³(3) = 1
log³(3) = 1/3
Now, go back to the original equation:
2 * log³(27x) = 2 * log³(3x) = -7
Divide both sides by 2:
log³(3x) = -7/2
Now, using the exponential form of logarithms:
3^(log³(3x)) = 3^(-7/2)
3x = 3^(-7/2)
To simplify the right-hand side:
3^(-7/2) = 1 / 3^(7/2)
Now, rewrite 3^(7/2) as (3^(1/2))^7 = √3^7:
3^(-7/2) = 1 / √(3^7)
Now, we can rationalize the denominator by multiplying the numerator and denominator by √(3^7):
3^(-7/2) = √(3^7) / (3^7)
Now the equation becomes:
3x = √(3^7) / (3^7)
To calculate the right-hand side:
√(3^7) ≈ √(2187) ≈ 46.81
3^7 = 2187
So, the equation becomes:
3x ≈ 46.81 / 2187
Now divide to find the approximate value of x:
x ≈ 0.0214
Therefore, the approximate value of x that satisfies the equation is x ≈ 0.0214.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili