
НОД (123;567)Помогите!


Ответы на вопрос





123 = 3 · 41
567 = 3 · 3 · 3 · 3 · 7
Общие множители чисел: 3
НОД (123; 567) = 3



To find the greatest common divisor (GCD) of two numbers, 123 and 567, you can use the Euclidean algorithm. The Euclidean algorithm is a simple and efficient method for finding the GCD of two integers.
Here are the steps to find the GCD of 123 and 567:
Step 1: Divide the larger number by the smaller number. Step 2: Take the remainder of the division. Step 3: Replace the larger number with the smaller number and the smaller number with the remainder. Step 4: Repeat steps 1 to 3 until the remainder becomes zero. Step 5: The last non-zero remainder is the GCD of the two original numbers.
Let's calculate it step by step:
Step 1: Divide 567 by 123 567 ÷ 123 = 4 with a remainder of 81
Step 2: Replace 567 with 123 and 123 with 81
Step 3: Divide 123 by 81 123 ÷ 81 = 1 with a remainder of 42
Step 4: Replace 123 with 81 and 81 with 42
Step 5: Divide 81 by 42 81 ÷ 42 = 1 with a remainder of 39
Step 6: Replace 81 with 42 and 42 with 39
Step 7: Divide 42 by 39 42 ÷ 39 = 1 with a remainder of 3
Step 8: Replace 42 with 39 and 39 with 3
Step 9: Divide 39 by 3 39 ÷ 3 = 13 with a remainder of 0
Since the remainder has become zero, we stop here. The last non-zero remainder was 3. Therefore, the greatest common divisor (GCD) of 123 and 567 is 3.
So, GCD(123, 567) = 3


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili