
Решить неравенство log_0,2 (x-1)>=log_0,2 2


Ответы на вопрос





To solve the inequality log₀.₂(x-1) ≥ log₀.₂2, we need to use properties of logarithms to simplify and find the solution. Here are the steps to do that:
Step 1: Recall the logarithmic property that logₐ(b) = logₐ(c) if and only if b = c.
Step 2: Apply the property to our inequality, which means we set the arguments inside the logarithms equal to each other:
log₀.₂(x-1) = log₀.₂2
Step 3: Now, both sides of the equation have the same base, which is 0.₂. Therefore, we can drop the logarithm notation and simply equate the arguments:
x - 1 = 2
Step 4: Solve for x:
x = 2 + 1
x = 3
Step 5: Now, we need to check whether the solution is valid for the original inequality. Since we can't have a logarithm with a non-positive argument, we need to make sure that (x - 1) > 0.
x - 1 > 0 3 - 1 > 0 2 > 0
Since 2 is greater than 0, the solution x = 3 is valid.
Step 6: Finally, we need to determine the solution set for the inequality. Since we've only found one solution, x = 3, the solution set is:
{x | x = 3}


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili