Вопрос задан 28.07.2023 в 20:34. Предмет Математика. Спрашивает Микелевич Настя.

1<(3х^2-6х+12)/(х^2+2)<3

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мацько Софья.
Решение на фотке
Верю что понятно

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the inequality 3x26x+12x2+2\frac{3x^2 - 6x + 12}{x^2 + 2} for xx, we can follow these steps:

Step 1: Find the domain of the expression Since the denominator x2+2x^2 + 2 cannot be equal to zero (as division by zero is undefined), we need to find the values of xx for which x2+2=0x^2 + 2 = 0. However, there are no real solutions for this equation because x2+2=0x^2 + 2 = 0 leads to x2=2x^2 = -2, which has no real solutions. Thus, the expression is defined for all real values of xx.

Step 2: Determine the critical points of the expression Critical points occur where the numerator or denominator equals zero. However, since there are no real solutions for x2+2=0x^2 + 2 = 0, there are no critical points in this case.

Step 3: Analyze the sign of the expression in different intervals Since there are no critical points, we can choose test points in different intervals to determine the sign of the expression in those intervals.

Let's choose x=1x = -1, x=0x = 0, and x=1x = 1 as test points, which divide the real number line into four intervals: (,1)(-∞, -1), (1,0)(-1, 0), (0,1)(0, 1), and (1,+)(1, +∞).

For x=1x = -1: 3(1)26(1)+12(1)2+2=3+6+123=213=7\frac{3(-1)^2 - 6(-1) + 12}{(-1)^2 + 2} = \frac{3 + 6 + 12}{3} = \frac{21}{3} = 7. Thus, the expression is positive in the interval (,1)(-∞, -1).

For x=0x = 0: 3(0)26(0)+12(0)2+2=122=6\frac{3(0)^2 - 6(0) + 12}{(0)^2 + 2} = \frac{12}{2} = 6. Thus, the expression is positive in the interval (1,0)(-1, 0).

For x=1x = 1: 3(1)26(1)+12(1)2+2=36+123=93=3\frac{3(1)^2 - 6(1) + 12}{(1)^2 + 2} = \frac{3 - 6 + 12}{3} = \frac{9}{3} = 3. Thus, the expression is positive in the interval (0,1)(0, 1).

Step 4: Solve the inequality The inequality is 1<3x26x+12x2+2<31 < \frac{3x^2 - 6x + 12}{x^2 + 2} < 3.

Since the expression is positive in all intervals, we don't need to worry about the direction of the inequality signs.

The solution is all real values of xx because the expression 3x26x+12x2+2\frac{3x^2 - 6x + 12}{x^2 + 2} is positive for all real values of xx, and thus, the inequality is satisfied for all xx.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос