Вопрос задан 28.07.2023 в 01:43. Предмет Математика. Спрашивает Комаров Сережа.

Найди значения выражений x2−2xy+y2 и (x−y)2 и сравни их, если x=-9,6 и y=-2,8

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Репин Иван.

x^2 -2xy+y^2

Если х=-9,6, у=-2,8, то

(-9,6)^2 -2*(-9,6)*(-2,8)+(-2,8)^2 =92,16-53,76+7,84=46,24

__________________

(x-y)^{2}

Если х=-9,6, у=-2,8, то

(-9,6-(-2,8))^{2} =(-6,8)^{2} =46,24


Можно сделать выводы, что эти выражения равны

x^{2} -2xy+y^{2} =(x-y)^{2}

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте подставим значения x и y в выражения и найдем их значения:

  1. Выражение x^2 - 2xy + y^2: x^2 - 2xy + y^2 = (-9.6)^2 - 2(-9.6)(-2.8) + (-2.8)^2 = 92.16 - 53.76 + 7.84 = 46.24

  2. Выражение (x - y)^2: (x - y)^2 = (-9.6 - (-2.8))^2 = (-6.8)^2 = 46.24

Оба выражения дают одинаковое значение 46.24, если подставить x = -9.6 и y = -2.8.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос