
1:√1+√2 + 1:√2+√3...1:√2017+√2018


Ответы на вопрос

..................................................................




To simplify the given expression, let's rewrite it in a clearer format:
1/√1 + 1/√2 + 1/√2 + 1/√3 + ... + 1/√2017 + 1/√2018
Now, notice that there are repeating terms with some of the square root values. Specifically, the terms with 1/√2 appear twice, the terms with 1/√3 appear twice, and so on until the terms with 1/√2017 appear twice. The only term without a repetition is 1/√1.
Let's group the terms accordingly:
(1/√1) + (1/√2 + 1/√2) + (1/√3 + 1/√3) + ... + (1/√2017 + 1/√2017) + (1/√2018)
Simplifying:
1 + 2(1/√2) + 2(1/√3) + ... + 2(1/√2017) + 1/√2018
Now, let's notice that the expression inside the parentheses is twice the sum of the reciprocals of square roots from 2 to 2017:
2(1/√2 + 1/√3 + ... + 1/√2017)
Now, we can factor out the common term of 2 and rewrite the sum as follows:
2 * (1/√2 + 1/√3 + ... + 1/√2017) = 2 * (√2 - 1 + √3 - √2 + √4 - √3 + ... + √2017 - √2016)
Notice that most of the terms in the expansion will cancel out, leaving only the first and the last term:
= 2 * (√2017 - 1)
Finally, add the remaining term:
= 2√2017 - 2
So, the simplified form of the given expression is 2√2017 - 2.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili