Вопрос задан 27.07.2023 в 06:01. Предмет Математика. Спрашивает Панков Илья.

(x+1)(x-1)/x-3<0 помогите пожалуйста

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Тамберг Жангир.
Вот ответ к твоей задаче

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этого неравенства, давайте разберемся пошагово:

  1. Начнем с нахождения точек разрыва, то есть значения, при которых знаменатель становится равным нулю:

x - 3 = 0 x = 3

Мы знаем, что неравенство не может быть выполнено при x = 3, так как это приведет к делению на ноль.

  1. Теперь найдем значения x, при которых выражение (x+1)(x-1) меняет знак:

(x + 1)(x - 1) = 0

Это произойдет, когда x = -1 или x = 1.

Теперь мы знаем, что неравенство может менять знак в трех интервалах:

I. x < -1 II. -1 < x < 1 III. x > 1

  1. Определим знак выражения (x+1)(x-1) на каждом из этих интервалов, чтобы узнать, когда оно отрицательно:

I. x < -1: Для x < -1 оба множителя (x+1) и (x-1) будут отрицательными, так как x + 1 < 0 и x - 1 < 0. Произведение отрицательных чисел будет положительным, поэтому неравенство не выполняется на этом интервале.

II. -1 < x < 1: Для -1 < x < 1 множитель (x + 1) будет положительным (так как x + 1 > 0), а (x - 1) останется отрицательным (так как x - 1 < 0). Произведение отрицательного и положительного чисел будет отрицательным, что означает, что неравенство выполняется на этом интервале.

III. x > 1: Для x > 1 оба множителя (x + 1) и (x - 1) будут положительными, так как x + 1 > 0 и x - 1 > 0. Произведение положительных чисел будет положительным, поэтому неравенство не выполняется на этом интервале.

Итак, решение неравенства: -1 < x < 1.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос