Вопрос задан 18.07.2018 в 00:00. Предмет Математика. Спрашивает Барсянин Максим.

Основанием пирамиды является квадрат, одно из боковых ребер перпендикулярно к плоскости основания.

Плоскость боковой грани, не проходящей через высоту пирамиды, наклонена к плоскости основания под углом 45°. Наибольшее боковое ребро равно 12 см. Найдите: а) высоту пирамиды; б) площадь боковой поверхности пирамиды.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Карпов Саша.

Так как одно из боковых ребер перпендикулярно к плоскости
основания, то 2 боковые грани вертикальны. Остальные 2 наклонены под углом 45 градусов.
Если обозначить сторону основания за а, то высота пирамиды будет равна тоже а.
Наибольшее боковое ребро равно 12 см - можно составить уравнение как для гипотенузы:
а² + (а√2)² = 12²
а² + 2а² = 144
3а² = 144
а = √(144/3) = √48 = 4√3 см.
Отсюда ответ на 1 вопрос Н = 4√3 см.
Боковая поверхность состоит из 4 прямоугольных треугольников:
2 из них имеют катеты по а,
2 - один катет равен а, второй а√2 как гипотенуза первых граней.
Тогда Sбок = 2*(1/2)а² + 2*а*(1/2)(а√2) = а² + а²√2 = а²(1+√2) см².

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос