
2sinxcosx+4cos2x = sin2x+ cos2x


Ответы на вопрос

2sinxcosx+4cos2x = sin2x+ cos2x
sin2x+4cos2x = sin2x+ cos2x
cos2x=0
2x=(пи)/2 +(пи)к
х=(пи)/4+((пи)к)/2



To prove the given trigonometric equation 2sin(x)cos(x) + 4cos^2(x) = sin^2(x) + cos^2(x), we'll work with the left-hand side (LHS) and the right-hand side (RHS) separately and simplify them step by step.
LHS: 2sin(x)cos(x) + 4cos^2(x)
We'll use the identity sin(2x) = 2sin(x)cos(x) to rewrite the first term: LHS = sin(2x) + 4cos^2(x)
Next, we'll use the Pythagorean identity sin^2(x) + cos^2(x) = 1 to replace cos^2(x): LHS = sin(2x) + 4(1 - sin^2(x))
RHS: sin^2(x) + cos^2(x)
As per the Pythagorean identity, this is simply equal to 1.
Now, let's compare the LHS and RHS:
LHS = sin(2x) + 4(1 - sin^2(x)) RHS = 1
The goal is to show that the LHS is equal to the RHS for all values of x.
Now, let's use another trigonometric identity, sin^2(x) + cos^2(x) = 1, to simplify the LHS further:
LHS = sin(2x) + 4 - 4sin^2(x)
We know that sin(2x) = 2sin(x)cos(x), so we can rewrite sin^2(x) as (1 - cos^2(x)):
LHS = 2sin(x)cos(x) + 4 - 4(1 - cos^2(x))
Now, distribute the -4 to the terms inside the parentheses:
LHS = 2sin(x)cos(x) + 4 - 4 + 4cos^2(x)
Simplify:
LHS = 2sin(x)cos(x) + 4cos^2(x)
Now, we can see that the LHS is the same as the original expression. So, we have:
2sin(x)cos(x) + 4cos^2(x) = sin(2x) + 4cos^2(x)
Since we showed that the LHS is equal to the RHS, we have proven the given trigonometric equation.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili