
(х+8)(х-4)<0 полное решение


Ответы на вопрос





To find the solution to the inequality , we need to determine the intervals of values for that satisfy the inequality. To do this, we can use a method called "sign chart" or "interval notation."
Step 1: Find the critical points The critical points are the values of that make the expression or equal to zero. So, set each factor to zero and solve for :
Step 2: Create a sign chart
Now, we'll create a sign chart with the critical points and test intervals:
Step 3: Interpret the sign chart
The sign chart shows the sign of each factor and the sign of the entire expression within each interval. The expression is positive in the intervals where both factors have the same sign (either both positive or both negative) and negative when the factors have opposite signs.
Step 4: Determine the solution
The inequality is satisfied when the expression is negative. From the sign chart, we see that the expression is negative in the interval .
Thus, the solution to the inequality is . In interval notation, the solution is . This means any value of within the open interval will satisfy the inequality.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili