
1)НОД(114,300) 2)НОД(161,350) 3)НОД(108,360) 4)НОД(203,560) 1)НОК(32,48) 2)НОК(100,180)
3)НОК(27,36) 4)НОК(50,297

Ответы на вопрос

114=2×3×19
300=3×5×5×2×2
НОД(161;350)=7
161=7×23
350=5×7×2×5
НОД(108;360)=2×2×3×3=36
108=2×3×2×3×3
360=2×3×3×2×2×5
НОД(203;560)=7
203=7×29
560=2×2×7×5×2×2
НОК(32;48)=2×2×2×2×2×3=96
32=2×2×2×2×2
48=3×2×2×2×2
НОК(100;180)=2×3×3×2×5×5=900
100=2×5×5×2
180=2×3×3×2×5
НОК(27;36)=3×3×3×2×2=108
27=3×3×3
36=2×3×2×3
НОК(50;297)=5×5×2×3×3×3×11=14850
50=5×5×2
297=3×3×3×11



To find the greatest common divisor (НОД) and the least common multiple (НОК) of the given numbers, you can use the following formulas and steps:
- НОД(114, 300):
To find the greatest common divisor, you can use the Euclidean algorithm: Step 1: Divide the larger number by the smaller number and find the remainder. 300 ÷ 114 = 2 with a remainder of 72.
Step 2: Replace the larger number with the smaller number and the smaller number with the remainder from the previous step. 114 ÷ 72 = 1 with a remainder of 42.
Step 3: Repeat the process until you get a remainder of 0. 72 ÷ 42 = 1 with a remainder of 30. 42 ÷ 30 = 1 with a remainder of 12. 30 ÷ 12 = 2 with a remainder of 6. 12 ÷ 6 = 2 with a remainder of 0.
The last nonzero remainder is 6, so the greatest common divisor (НОД) of 114 and 300 is 6.
- НОД(161, 350):
Using the Euclidean algorithm: 350 ÷ 161 = 2 with a remainder of 28. 161 ÷ 28 = 5 with a remainder of 21. 28 ÷ 21 = 1 with a remainder of 7. 21 ÷ 7 = 3 with a remainder of 0.
The last nonzero remainder is 7, so the greatest common divisor (НОД) of 161 and 350 is 7.
- НОД(108, 360):
Using the Euclidean algorithm: 360 ÷ 108 = 3 with a remainder of 36. 108 ÷ 36 = 3 with a remainder of 0.
The last nonzero remainder is 36, so the greatest common divisor (НОД) of 108 and 360 is 36.
- НОД(203, 560):
Using the Euclidean algorithm: 560 ÷ 203 = 2 with a remainder of 154. 203 ÷ 154 = 1 with a remainder of 49. 154 ÷ 49 = 3 with a remainder of 7. 49 ÷ 7 = 7 with a remainder of 0.
The last nonzero remainder is 7, so the greatest common divisor (НОД) of 203 and 560 is 7.
- НОК(32, 48):
To find the least common multiple, you can use the formula: НОК(a, b) = (a * b) / НОД(a, b)
НОД(32, 48) = 16 (You can calculate this using the Euclidean algorithm as shown in the first example.) НОК(32, 48) = (32 * 48) / 16 = 96.
- НОК(100, 180):
НОД(100, 180) = 20 (You can calculate this using the Euclidean algorithm as shown in the second example.) НОК(100, 180) = (100 * 180) / 20 = 900.
- НОК(27, 36):
НОД(27, 36) = 9 (You can calculate this using the Euclidean algorithm.) НОК(27, 36) = (27 * 36) / 9 = 108.
- НОК(50, 297):
НОД(50, 297) = 1 (You can calculate this using the Euclidean algorithm.) НОК(50, 297) = (50 * 297) / 1 = 14850.
So, the results are:
НОД(114, 300) = 6
НОД(161, 350) = 7
НОД(108, 360) = 36
НОД(203, 560) = 7
НОК(32, 48) = 96
НОК(100, 180) = 900
НОК(27, 36) = 108
НОК(50, 297) = 14850


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili