Let's solve each expression step by step:
a) 72×1514+492×1514−71×1514+493×1514
Step 1: Find a common denominator for all fractions involved. In this case, the common denominator is 7×49×15=5145.
Step 2: Convert all fractions to have the common denominator:
72×1514=7×15×492×14×49=51452×14×49
492×1514=49×152×14×15=51452×14×15
71×1514=7×15×491×14×49=51451×14×49
493×1514=49×153×14×15=51453×14×15
Step 3: Combine the fractions:
51452×14×49+51452×14×15−51451×14×49+51453×14×15
Step 4: Perform the arithmetic:
51452×14×49+2×14×15−1×14×49+3×14×15
514598+42−49+63
5145154
Step 5: Simplify the fraction, if possible. In this case, the fraction cannot be simplified further, so the result is:
5145154
b) 103×(43−125)
Step 1: Solve the expression inside the parentheses first:
43−125
Step 2: Find a common denominator, which is 4×12=48.
Step 3: Convert both fractions to have the common denominator:
43=4×123×12=4836
125=12×45×4=4820
Step 4: Perform the subtraction:
0
0