Вопрос задан 18.07.2023 в 18:17. Предмет Математика. Спрашивает Платонов Артур.

X=y + arctg y производная

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Плисецкий Юрий.

Ответ:

x'=1+\frac{1}{1+y^2}

Пошаговое объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To find the derivative of the expression X = y + arctan(y), we can use the rules of differentiation. Let's differentiate each term separately:

  1. Differentiating y with respect to y gives us 1.
  2. Differentiating arctan(y) with respect to y requires the chain rule. The derivative of arctan(u) with respect to u is 1 / (1 + u^2). So, applying the chain rule, we have d(arctan(y))/dy = (1 / (1 + y^2)) * dy/dy = 1 / (1 + y^2).

Now, we can add the derivatives together:

dX/dy = 1 + 1 / (1 + y^2)

Therefore, the derivative of X with respect to y is 1 + 1 / (1 + y^2).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос