
2 sinx*cosx+√3 cosx = 2sinx+√3


Ответы на вопрос

Ответ:
Пошаговое объяснение:
cosx(2sinx+V3)-(2sinx+V3)=0, (2sinx+V3)(cosx-1)=0, 2sinx+V3=0 или cosx-1=0, sinx=-V3/2, x=(-1)^n* (-п/3)+пк, cosx=1, x=2пк, к E Z



To solve the equation 2sin(x)cos(x) + √3cos(x) = 2sin(x) + √3, we can first simplify the equation and then solve for x.
Let's begin:
2sin(x)cos(x) + √3cos(x) = 2sin(x) + √3
First, we notice that both terms on the left side of the equation contain cos(x). We can factor out cos(x) to simplify the equation:
cos(x)(2sin(x) + √3) = 2sin(x) + √3
Now, we have two cases to consider:
Case 1: cos(x) = 0
If cos(x) = 0, then the left side of the equation becomes zero. We can substitute cos(x) = 0 into the original equation to check if it satisfies the equation:
2sin(x)(0) + √3(0) = 2sin(x) + √3 0 = 2sin(x) + √3
As there is no value of sin(x) that can satisfy this equation, there are no solutions in this case.
Case 2: (2sin(x) + √3) ≠ 0
In this case, we can divide both sides of the equation by (2sin(x) + √3):
cos(x) = (2sin(x) + √3) / (2sin(x) + √3)
Simplifying further, we have:
cos(x) = 1
Now, we know that the range of the cosine function is [-1, 1]. Since cos(x) = 1, we can conclude that x must be an angle whose cosine is equal to 1. Therefore, x = 2πn, where n is an integer.
In summary, the equation 2sin(x)cos(x) + √3cos(x) = 2sin(x) + √3 has no solutions when cos(x) = 0, and when (2sin(x) + √3) ≠ 0, the solution is x = 2πn, where n is an integer.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili