Вопрос задан 18.07.2023 в 06:18. Предмет Математика. Спрашивает Мулдатьянов Айдамир.

Найти самое маленькое натуральное число, которое дает остаток 1 при делении на 2, на 3, на 4, на 5

и на 6, и делится на 11
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Плотников Рома.

Ответ:

17:2

22:7

17:4

13:6

23:11

0 0
Отвечает Назаров Алижан.

Ответ:

17:2

21:4

32:6

23:11

Пошаговое объяснение:

..

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте найдем это число поэтапно.

Первое условие говорит нам, что число должно давать остаток 1 при делении на 2. Самое маленькое такое число - 1, но оно не делится на 11.

Теперь добавим условие, что число должно давать остаток 1 при делении на 3. Нам нужно найти число, которое удовлетворяет обоим условиям. Очевидно, что число должно быть больше 1. Проверим числа, начиная с 2: 2, 3, 4, 5, и так далее. Первое число, которое удовлетворяет обоим условиям, - это 4. Но оно не делится на 11.

Добавим условие, что число должно давать остаток 1 при делении на 4. Снова начнем с 2: 2, 3, 4, 5, и так далее. Первое число, которое удовлетворяет всем трем условиям, - это 5. Но оно также не делится на 11.

Добавим условие, что число должно давать остаток 1 при делении на 5. Начнем с 2: 2, 3, 4, 5, 6, и так далее. Первое число, которое удовлетворяет всем условиям, - это 6. Но оно также не делится на 11.

Наконец, добавим условие, что число должно делиться на 6 и давать остаток 1 при делении на 6. Теперь нам нужно найти число, которое делится на 11. Одним из таких чисел является 66.

Таким образом, самое маленькое натуральное число, которое дает остаток 1 при делении на 2, на 3, на 4, на 5 и на 6, и делится на 11, равно 66.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос