Вопрос задан 15.07.2023 в 05:40. Предмет Математика. Спрашивает Кравчук Даша.

1)|у|-2=1 2)|5у|-4=6 3)4+|3у=7 4)|у-5|=3 5)|7-у|=-2 6)|9х+2|-3 в кубе=(-3)в кубе |-модуль

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гулынская Юлия.

Ответ:

1) у=-3 3

2)у= 2 -2

3) непонятно где модуль

4) 8, 2

5)-

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
  1. To solve the equation |у| - 2 = 1:

Add 2 to both sides of the equation: |у| = 3

The absolute value of у can be either positive or negative, so we'll consider both cases:

Case 1: у is positive: у = 3

Case 2: у is negative: -у = 3 Multiply both sides by -1: у = -3

Therefore, the solutions to the equation are у = 3 and у = -3.

  1. To solve the equation |5у| - 4 = 6:

Add 4 to both sides of the equation: |5у| = 10

The absolute value of 5у can be either positive or negative, so we'll consider both cases:

Case 1: 5у is positive: 5у = 10 Divide both sides by 5: у = 2

Case 2: 5у is negative: -5у = 10 Divide both sides by -5: у = -2

Therefore, the solutions to the equation are у = 2 and у = -2.

  1. To solve the equation 4 + |3у| = 7:

Subtract 4 from both sides of the equation: |3у| = 3

The absolute value of 3у can be either positive or negative, so we'll consider both cases:

Case 1: 3у is positive: 3у = 3 Divide both sides by 3: у = 1

Case 2: 3у is negative: -3у = 3 Divide both sides by -3: у = -1

Therefore, the solutions to the equation are у = 1 and у = -1.

  1. To solve the equation |у - 5| = 3:

There are two possible cases for the expression inside the absolute value:

Case 1: у - 5 is positive: у - 5 = 3 Add 5 to both sides of the equation: у = 8

Case 2: у - 5 is negative: -(у - 5) = 3 Multiply both sides by -1: у - 5 = -3 Add 5 to both sides of the equation: у = 2

Therefore, the solutions to the equation are у = 8 and у = 2.

  1. To solve the equation |7 - у| = -2:

Since the absolute value of a number is always non-negative, the equation |7 - у| = -2 has no solutions. This is because there is no value of у that can make the absolute value equal to a negative number.

  1. To solve the equation |9х + 2|³ = (-3)³:

Cube both sides of the equation: |9х + 2|³ = -27

Since the absolute value of a number cubed is always non-negative, the equation has no solutions. This is because there is no value of х that can make the absolute value cubed equal to a negative number.

|-модуль| is not a valid equation or expression. Could you please provide more information or clarify what you mean?

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос