
Log 0,5 ^2x-log 0,5^x-2=0


Ответы на вопрос

Ответ:
некорректно написано уравнение




To solve the equation log(0.5)^(2x) - log(0.5)^x - 2 = 0, let's simplify it step by step:
First, we can rewrite the equation using the properties of logarithms:
2x * log(0.5) - x * log(0.5) - 2 = 0
Next, notice that both terms have a common factor of log(0.5). We can factor it out:
log(0.5) * (2x - x) - 2 = 0
Simplifying further:
log(0.5) * x - 2 = 0
Now, let's isolate x by moving the constant term to the other side:
log(0.5) * x = 2
To solve for x, we can exponentiate both sides with base 0.5. Remember that the logarithmic equation log(base b)(a) = c is equivalent to b^c = a.
0.5^(log(0.5) * x) = 0.5^2
0.5^x = 0.25
Now, we have a simpler equation. Taking the logarithm of both sides, we can solve for x:
log(0.5^x) = log(0.25)
x * log(0.5) = log(0.25)
Using the properties of logarithms, we can simplify the right side further:
x * log(0.5) = log(0.5^2)
x * log(0.5) = log(0.25)
Now, dividing both sides by log(0.5):
x = log(0.25) / log(0.5)
Using logarithmic properties again, we can simplify:
x = log(0.25) / log(0.5)
x = log(0.5^-2) / log(0.5)
Applying the property log(base b)(a^c) = c * log(base b)(a):
x = -2 * log(0.5) / log(0.5)
Finally, calculating the values:
x = -2 * (-1) / (-0.3010)
x = 2 / 0.3010
x ≈ 6.644
Therefore, the solution to the equation log(0.5)^(2x) - log(0.5)^x - 2 = 0 is approximately x = 6.644.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili