
Cosx+cos2x+cos6x+cos7x=4cosx/2cos5x/2cos4


Ответы на вопрос

Ответ:0=0
Пошаговое объяснение:
1) cosx+cos7x=2cos4x*cos3x
2)cos2x+cos6x=2cos4x*cos2x
3)2cos4x(cos3x+cos2x)=2cos4x(2cos5x/2*cosx/2)=4cos4x*cos(5x/2)*cos(x/2)
4)4cos4x*cos(5x/2)*cos(x/2)=4cos4x*cos(5x/2)*cos(x/2)



To prove the given trigonometric equation:
cos(x) + cos(2x) + cos(6x) + cos(7x) = 4cos(x)/2cos(5x)/2cos(4x)
Let's work on the left-hand side (LHS) and the right-hand side (RHS) separately and simplify both sides to see if they are equal.
Step 1: Simplify the left-hand side (LHS)
cos(x) + cos(2x) + cos(6x) + cos(7x)
Now, let's use the trigonometric identity: cos(A) + cos(B) = 2 * cos((A + B) / 2) * cos((A - B) / 2)
Applying this identity to the given equation:
cos(x) + cos(2x) = 2 * cos((x + 2x) / 2) * cos((x - 2x) / 2) = 2 * cos(3x/2) * cos(-x/2) = 2 * cos(3x/2) * cos(x/2)
cos(6x) + cos(7x) = 2 * cos((6x + 7x) / 2) * cos((6x - 7x) / 2) = 2 * cos(13x/2) * cos(-x/2) = 2 * cos(13x/2) * cos(x/2)
Substituting back into the original expression:
cos(x) + cos(2x) + cos(6x) + cos(7x) = 2 * cos(3x/2) * cos(x/2) + 2 * cos(13x/2) * cos(x/2)
Now, we can use the following identity: cos(A) * cos(B) = (1/2) * [cos(A + B) + cos(A - B)]
Apply the above identity to the expression:
2 * cos(3x/2) * cos(x/2) = (1/2) * [cos(3x/2 + x/2) + cos(3x/2 - x/2)] = (1/2) * [cos(2x) + cos(x)] = (1/2) * [2 * cos(x) + cos(x)] = 3/2 * cos(x)
2 * cos(13x/2) * cos(x/2) = (1/2) * [cos(13x/2 + x/2) + cos(13x/2 - x/2)] = (1/2) * [cos(7x) + cos(6x)] = (1/2) * [2 * cos(7x) + cos(6x)] = 3/2 * cos(7x)
Substitute back into the expression:
cos(x) + cos(2x) + cos(6x) + cos(7x) = 3/2 * cos(x) + 3/2 * cos(7x)
Step 2: Simplify the right-hand side (RHS)
4 * cos(x) / [2 * cos(5x) * 2 * cos(4x)]
= 4 * cos(x) / (4 * cos(5x) * cos(4x))
= cos(x) / (cos(5x) * cos(4x))
Step 3: Compare LHS and RHS
Now, let's compare the simplified LHS and RHS:
LHS: cos(x) + cos(2x) + cos(6x) + cos(7x) = 3/2 * cos(x) + 3/2 * cos(7x)
RHS: cos(x) / (cos(5x) * cos(4x))
It is evident that the LHS and RHS are not the same. So, the given equation is not true:
cos(x) + cos(2x) + cos(6x) + cos(7x) ≠ 4cos(x)/2cos(5x)/2cos(4x)
The statement in question is incorrect. There might be a typographical error or a misunderstanding of the trigonometric equation involved. Please double-check the original equation and ensure there are no mistakes or omissions.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili