
2+1+1/2+1/4+1/8+...


Ответы на вопрос




The expression you provided is an infinite series called a geometric series. It is a sum of an infinite number of terms where each term is obtained by multiplying the previous term by a constant ratio.
The general form of a geometric series is given by:
a + ar + ar^2 + ar^3 + ...
where 'a' is the first term and 'r' is the common ratio between consecutive terms.
In your specific case, the first term 'a' is 2, and the common ratio 'r' is 1/2. Therefore, the geometric series is:
2 + 2*(1/2) + 2*(1/2)^2 + 2*(1/2)^3 + ...
To find the sum of this geometric series, you can use the formula for the sum of an infinite geometric series:
Sum = a / (1 - r)
where 'a' is the first term and 'r' is the common ratio.
In this case, the sum of the series is:
Sum = 2 / (1 - 1/2) = 2 / (1/2) = 2 * 2 = 4
So, the sum of the series 2 + 1 + 1/2 + 1/4 + 1/8 + ... is equal to 4.


Похожие вопросы
Топ вопросов за вчера в категории Математика





Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili