Вопрос задан 11.07.2023 в 15:03. Предмет Математика. Спрашивает Юхновец Лиза.

Для всех значений параметра p, решить уравнение ( - 1)x= + 1

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Жолобов Костя.

(p^{2} - 1)x = p^{3} + 1

Если p^{2} - 1 =0, то есть если p = \pm 1, то:

  • при p = -1 имеем: 0x = 0 — правда, следовательно, x \in \mathbb{R}
  • при p = 1 имеем: 0x = 2 — неправда, следовательно, x \in \varnothing

Если p^{2} - 1 \neq 0, то есть если p \neq \pm 1, то x = \dfrac{p^{3} + 1}{p^{2} - 1} = \dfrac{(p + 1)(p^{2} - p + 1)}{(p - 1)(p + 1)} = \dfrac{p^{2} - p + 1}{p - 1}

Ответ: если p = -1, то x \in \mathbb{R}; если p = 1, то x \in \varnothing; если p \neq \pm 1, то x = \dfrac{p^{2} - p + 1}{p - 1}

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Ваше уравнение выглядит некорректно, так как в нем отсутствуют значения параметра p и числа справа от знака равенства. Пожалуйста, уточните уравнение, чтобы я мог предоставить вам его решение.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос