Вопрос задан 10.07.2023 в 23:16. Предмет Математика. Спрашивает Shorken Akerke.

Сумма трех чисел равна 800. Первое число составляет 25% от суммы второе число составляет 52% от

суммы. Найдите третье число. ​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Адамов Алексей.

Ответ:

184

Пошаговое объяснение:

1. Первое число = 800*25% = 800*0,25 = 200

2. Второе число = 800*52% = 800*0,52 = 416

3. Третье число = 800 - 200 - 416 = 184

Второй вариант решения:

1. Третье число составляет 100% - 25% - 52% = 23% от суммы

2. Тогда это 800*23% = 800*0,23 = 184

0 0
Отвечает Гнатів Юля.

Ответ: 184

Пошаговое объяснение:

1) 52 + 25 = 77%

2) 100% - 77% = 23% — столько процентов от суммы составляет третье число.

3) 23% - 0,23

800 * 0,23 = 184

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Обозначим первое число как x, второе число как y и третье число как z.

У нас есть следующая система уравнений, исходя из условия:

  1. x + y + z = 800 (Сумма трех чисел равна 800)
  2. x = 0.25 * (x + y + z) (Первое число составляет 25% от суммы)
  3. y = 0.52 * (x + y + z) (Второе число составляет 52% от суммы)

Давайте решим эту систему уравнений.

Из уравнения 2 мы можем выразить x через сумму: x = 0.25 * (x + y + z) x = 0.25x + 0.25y + 0.25z

Вычтем 0.25x и 0.25y из обеих сторон: 0.75x = 0.25y + 0.25z

Делим обе стороны на 0.75: x = (0.25/0.75)y + (0.25/0.75)z x = (1/3)y + (1/3)z

Подставляем это выражение для x в уравнение 3: y = 0.52 * (x + y + z) y = 0.52 * ((1/3)y + (1/3)z + y + z) y = 0.52 * (y + z/3 + y + z) y = 0.52 * (2y + 4z/3)

Раскрываем умножение и упрощаем: y = 1.04y + 2.08z/3

Вычитаем 1.04y из обеих сторон: -0.04y = 2.08z/3

Делим обе стороны на -0.04: y = -52z/3

Теперь, зная y, давайте подставим его в уравнение 1: x + y + z = 800 x - 52z/3 + z = 800 x - (52/3)z + z = 800

Приводим слагаемые с z к общему знаменателю: x - (52/3 + 3/3)z = 800 x - (55/3)z = 800

Теперь мы можем найти значение третьего числа (z): (55/3)z = x - 800 z = (3/55)(800 - x)

Зная выражение для x (x = (1/3)y + (1/3)z) и подставив его в последнее уравнение, мы можем выразить z через y: z = (3/55)(800 - (1/3)y - (1/3)z)

Таким образом, у нас есть выражение для третьего числа (z) через второе число (y), но для полного решения требуется знание второго числа (y) изначально.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос