
Помогите пожалуйста автобус, и грузовая машина скорость которой была на 19 км/ч больше скорости
автобуса, выехали одновременно навстречу друг другу из двух городов, расстояние между которыми — 636 км. Найди скорости автобуса и грузовой машины, если известно, что они встретились через 4 ч. после выезда.

Ответы на вопрос

Ответ:
70 км/час, 89 км/час.
Пошаговое объяснение
Пусть скорость автобуса х км/час, тогда скорость грузовой машины х+19 км/час. Составим уравнение:
636 : (2х+19) = 4
636 = 8х + 76
8х=560
х=70
Скорость автобуса 70 км/час, грузовой машины 70+19=89 км/час.



Обозначим скорость автобуса как V_a, а скорость грузовой машины как V_g.
Согласно условию задачи, скорость грузовой машины была на 19 км/ч больше скорости автобуса: V_g = V_a + 19.
Также известно, что они двигались навстречу друг другу и встретились через 4 часа после выезда. За это время они в сумме прошли расстояние между городами, то есть 636 км:
4 * (V_a + V_g) = 636.
Подставим выражение для V_g из первого уравнения:
4 * (V_a + (V_a + 19)) = 636.
Раскроем скобки:
4 * (2 * V_a + 19) = 636, 8 * V_a + 76 = 636.
Теперь выразим V_a:
8 * V_a = 636 - 76, 8 * V_a = 560, V_a = 560 / 8, V_a = 70.
Таким образом, скорость автобуса V_a равна 70 км/ч. Тогда скорость грузовой машины V_g будет:
V_g = V_a + 19, V_g = 70 + 19, V_g = 89 км/ч.
Итак, скорость автобуса составляет 70 км/ч, а скорость грузовой машины равна 89 км/ч.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili