
A parking machine contained $3.05 made up of dimes and quarters. there were 20 coins in all. how
many dimes were there?

Ответы на вопрос

1 dime = $0.10
1 quarter = $0.25
If we have x dimes, then we have (20-x) quarters.
x*0.1 + (20-x)*0.25 = 3.05
0.1x + 5 - 0.25x = 3.05
0.25x - 0.1x = 5 - 3.05
0.15x = 1.95
x = 1.95/0.15
x = 13 - number of dimes



Let's assume the number of dimes as 'd' and the number of quarters as 'q'.
We can form two equations based on the given information:
The total value of the coins is $3.05: 0.10d + 0.25q = 3.05
The total number of coins is 20: d + q = 20
To solve these equations, we can use substitution or elimination method. Let's use the substitution method in this case.
From the second equation, we have: d = 20 - q
Substituting this value in the first equation: 0.10(20 - q) + 0.25q = 3.05
Simplifying the equation: 2 - 0.10q + 0.25q = 3.05 0.15q = 3.05 - 2 0.15q = 1.05 q = 1.05 / 0.15 q = 7
Now that we know the number of quarters is 7, we can substitute this value back into the second equation to find the number of dimes: d + 7 = 20 d = 20 - 7 d = 13
Therefore, there are 13 dimes in the parking machine.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili